
AutomationInterface - DaVinci Configurator 6
Development Documentation of the AutomationInterface v3.8.0

DaVinci Configurator v6.2.0

DaVinci Configurator Team

December 11, 2025

© 2025
Vector Informatik GmbH

Ingersheimerstr. 24
70499 Stuttgart

Contents
1 Release Version Alignment 10

2 Introduction 11
2.1 General . 11
2.2 Facts . 11

3 Getting started with Script Development 12
3.1 General . 12
3.2 Automation Script Development Types . 12
3.3 Script . 12
3.4 Script Creation . 12
3.5 Script File . 13
3.6 Script Project . 13

3.6.1 Java JDK Setup . 14
3.6.2 IntelliJ IDEA Setup . 14

3.7 Script Testing . 15
3.8 Script Debugging . 15
3.9 Script Location . 16
3.10 Kotlin Support . 16
3.11 List Script Task . 17
3.12 Run Script Task . 17
3.13 Add Script Location To Project . 18
3.14 Remove Script Location From Project . 18
3.15 Logging Configuration . 20

3.15.1 scriptLogger . 20

4 AutomationInterface Architecture 22
4.1 Components . 22
4.2 Languages . 23
4.3 Script Structure . 23

4.3.1 Script Tasks . 24
4.3.2 Script Locations . 24

4.4 Script loading . 24
4.4.1 Internal Script Reload Behavior . 24

4.5 Script Coding Conventions and Constraints . 25
4.5.1 Usage of static fields . 25
4.5.2 Usage of Outer Closure Scope Variables . 26
4.5.3 States over script task execution . 26
4.5.4 Multithreading Support . 26
4.5.5 Usage of DaVinci Configurator private Classes Methods or Fields 26

5 AutomationInterface API Reference 28
5.1 Introduction . 28
5.2 Script Creation . 29

5.2.1 Script Task Creation . 29
5.2.1.1 Script Creation with IDE Code Completion Support 30
5.2.1.2 Script Task isExecutableIf . 30

5.2.2 Description and Help . 31

© 2025, Vector Informatik GmbH 2 of 387

Contents

5.3 Script Task Types . 33
5.3.1 Available Types . 33

5.3.1.1 Application Types . 33
5.3.1.2 Project Types . 34
5.3.1.3 UI Types . 34
5.3.1.4 Generation Types . 35

5.4 Script Task Execution . 37
5.4.1 Execution Context . 37

5.4.1.1 Code Block Arguments . 38
5.4.2 Task Execution Sequence . 38
5.4.3 Script Path API during Execution . 39

5.4.3.1 Path Resolution by Parent Folder 40
5.4.3.2 Path Resolution . 40
5.4.3.3 Script Folder Path Resolution . 41
5.4.3.4 Project Folder Path Resolution . 41
5.4.3.5 BSW Package Folder Path Resolution 42
5.4.3.6 Temp Folder Path Resolution . 42
5.4.3.7 Other Project and Application Paths 43

5.4.4 Script logging API . 43
5.4.5 Versions API . 44
5.4.6 User Interactions . 45

5.4.6.1 UserInteraction . 45
5.4.6.2 Progress Indication . 46

5.4.7 Script Error Handling . 48
5.4.7.1 Script Exceptions . 48
5.4.7.2 Script Task Abortion by Exception 48
5.4.7.3 Unhandled Exceptions from Tasks 49

5.4.8 User Defined Classes and Methods . 50
5.4.9 Usage of Automation API in own defined Classes and Methods 51

5.4.9.1 Access the Automation API like the Script code{} Block 51
5.4.9.2 Access the Project API of the current active Project 51

5.4.10 User Defined Script Task Arguments . 52
5.4.10.1 User defined Argument Validators 53
5.4.10.2 Constraints . 54
5.4.10.3 Run Script Task with User Defined Task Arguments from CLI . . 56

5.4.11 Stateful Script Tasks . 58
5.4.12 ScriptAccess - Calling ScriptTasks . 60

5.5 Project Handling . 61
5.5.1 Projects . 61
5.5.2 Accessing the active Project . 61
5.5.3 Accessing the project search . 63
5.5.4 Expression Evaluation API . 64
5.5.5 Accessing Project Settings . 64

5.5.5.1 Project Folder Api . 64
5.5.5.2 Target Project Settings . 66
5.5.5.3 UseCase Project Settings . 67

5.5.6 Accessing Advanced Project Settings . 68
5.5.6.1 Firewall Files Settings . 69

5.5.7 Creating a new CFG6 Project . 70
5.5.7.1 Mandatory Settings . 70
5.5.7.2 Optional Project Settings . 71

© 2025, Vector Informatik GmbH 3 of 387

Contents

5.5.7.3 Target Settings . 71
5.5.7.4 Project Type Settings . 72
5.5.7.5 Post Build Settings . 72
5.5.7.6 Project Folder Settings . 72
5.5.7.7 External References . 75
5.5.7.8 Additional BSWMD modules . 75

5.5.8 Opening an existing Project . 76
5.5.8.1 Parameterized Project Load . 76
5.5.8.2 Open Project Details . 77

5.5.9 Create Ecu Configuration Report . 78
5.5.10 Saving a Project . 78
5.5.11 Opening AUTOSAR Files as Project . 80

5.5.11.1 Raw AUTOSAR models as Project 81
5.6 Model . 82

5.6.1 Introduction . 82
5.6.2 Getting Started . 82

5.6.2.1 Read the ActiveEcuc . 82
5.6.2.2 Write the ActiveEcuc . 86
5.6.2.3 Read the SystemDescription . 89
5.6.2.4 Write the SystemDescription . 90

5.6.3 BswmdModel in AutomationInterface . 92
5.6.3.1 BswmdModel Package and Class Names 92
5.6.3.2 Reading with BswmdModel . 92
5.6.3.3 Writing with BswmdModel . 93
5.6.3.4 Declaration with BswmdModel . 94
5.6.3.5 Bsw DefRefs . 94
5.6.3.6 BswmdModel DefRefs . 95
5.6.3.7 Untyped Model with the DefRef API 96
5.6.3.8 Switching from Domain Models to BswmdModel 97

5.6.4 MDF Model in AutomationInterface . 97
5.6.4.1 Reading the MDF Model . 97
5.6.4.2 Reading the MDF Model by String 100
5.6.4.3 Writing the MDF Model . 102
5.6.4.4 Simple Property Changes . 103
5.6.4.5 Creating single Child Members (0:1) 103
5.6.4.6 Creating and adding Child List Members (0:*) 104
5.6.4.7 Updating existing Elements . 106
5.6.4.8 Deleting Model Objects . 107
5.6.4.9 Duplicating Model Objects . 107
5.6.4.10 Special properties and extensions 108
5.6.4.11 Reverse Reference Resolution - ReferencesPointingToMe 110
5.6.4.12 Derived Containers . 110
5.6.4.13 AUTOSAR Root Object . 111
5.6.4.14 ActiveEcuC . 111
5.6.4.15 DefRef based Access to Containers and Parameters 112
5.6.4.16 Ecuc Parameter and Reference Value Access 112
5.6.4.17 Getting and Setting Formula Expression Values 114

5.6.5 SystemDescription Access . 116
5.6.6 Transactions . 118

5.6.6.1 Transactions API . 118
5.6.6.2 Operations . 122

© 2025, Vector Informatik GmbH 4 of 387

Contents

5.6.7 Model Synchronization . 123
5.6.8 PreBuild and PostBuild Variance (Post-build selectable) 123

5.6.8.1 Investigate Project Variance . 124
5.6.8.2 Variant Model Objects . 125

5.6.9 Additional Model API . 127
5.6.9.1 User Annotations . 127

5.7 Generation . 128
5.7.1 Code Generation . 128

5.7.1.1 Generation Settings . 128
5.7.1.2 Generation of Generation Steps . 132
5.7.1.3 Evaluate generation or validation results 133

5.7.2 Generation Task Types . 134
5.7.3 Software Component Templates and Contract Phase Headers Generation . 136

5.7.3.1 Swct Generation Settings . 136
5.7.3.2 Generation with default Project Settings 136
5.7.3.3 Generation of all Software Components 136
5.7.3.4 Generation of one Software Component 137
5.7.3.5 Generation of multiple Software Components 138
5.7.3.6 Set a user defined logger . 138
5.7.3.7 Evaluate generation results . 138

5.8 Validation . 139
5.8.1 Introduction . 139
5.8.2 Access Validation-Results . 140
5.8.3 Model Transaction and Validation-Result Invalidation 140
5.8.4 Solve Validation-Results with Solving-Actions 140

5.8.4.1 Solver API . 141
5.8.5 Advanced Topics . 143

5.8.5.1 Erroneous CEs of a Validation-Result 143
5.8.5.2 Access Validation-Results of a Model Object 143
5.8.5.3 Access Validation-Results of a DefRef 144
5.8.5.4 Filter Validation-Results using an ID Constant 144
5.8.5.5 Identification of a Particular Solving-Action 144
5.8.5.6 Validation-Result Description as MixedText 145
5.8.5.7 Further IValidationResultUI Methods 145
5.8.5.8 IValidationResultUI Acknowledgement 146
5.8.5.9 IValidationResultUI in a variant (Post-Build selectable) Project . 147
5.8.5.10 Examine Solving-Action Execution 148
5.8.5.11 Create a Validation-Result in a Script Task 149
5.8.5.12 Clear the on-demand ValidationResult 150
5.8.5.13 Turn off auto-solving-action execution 151

5.9 SystemDescription and StructuredExtract . 152
5.9.1 ISysDescService and sysDescModel-keyword 153
5.9.2 StructuredExtract and FlatView . 153

5.9.2.1 StructuredComponentView vs. FlatComponentView 154
5.9.2.2 Component-Instantiation . 154
5.9.2.3 Context and CompositionComponentSubstitute 154
5.9.2.4 ComponentPorts and ConnectionBuilder 155

5.9.3 Examples . 157
5.10 Domains . 161

5.10.1 Communication Domain . 161
5.10.1.1 CanControllers . 163

© 2025, Vector Informatik GmbH 5 of 387

Contents

5.10.1.2 CanFilterMasks . 164
5.10.1.3 CanPdus . 164
5.10.1.4 J1939 Requestable Configuration 166

5.10.2 Diagnostics Domain . 167
5.10.2.1 DemEvents . 168

5.10.3 Mode Management Domain . 170
5.10.3.1 BswM Auto Configuration . 170

5.10.4 Runtime System Domain . 173
5.10.4.1 Component Port Selection . 174
5.10.4.2 Signal Instance Selection . 180
5.10.4.3 Communication Element Selection 184
5.10.4.4 Component Type Selection . 187
5.10.4.5 Event Selection . 189
5.10.4.6 Executable Entity Selection . 193
5.10.4.7 Port Interface Selection . 195
5.10.4.8 Origin Component Port Selection 198
5.10.4.9 Component Port Connection . 201
5.10.4.10 Disconnect (unmap) Component Ports 215
5.10.4.11 Terminating Component Ports . 216
5.10.4.12 Data Mapping . 221
5.10.4.13 Remove Data Mappings . 243
5.10.4.14 Configure RTE Implementation Plug-ins 248
5.10.4.15 Create Component Prototypes . 251
5.10.4.16 Create Delegation Ports . 253
5.10.4.17 Task Mapping . 258
5.10.4.18 Bridge Between MDF and SI Model elements 286
5.10.4.19 Deleting Elements . 287
5.10.4.20 Variant Handling . 291
5.10.4.21 Retrieving Short Name Paths and Fully Qualified Names 292
5.10.4.22 Best Practice And Further Examples 294
5.10.4.23 Access to CEState of SI Model elements 297

5.10.5 Crypto Domain . 297
5.11 Unresolved Reference API . 299

5.11.1 Active ECUC Unresolved Reference API . 299
5.11.1.1 Selecting unresolved references . 300
5.11.1.2 Set changeable unresolved references 301

5.12 Persistency . 303
5.12.1 Model Export . 303

5.12.1.1 Export ActiveEcuc . 303
5.12.1.2 Export PostBuild Variants (Post-build selectable) 303
5.12.1.3 Export PreBuild Variants . 304
5.12.1.4 Export Module Configuration . 304
5.12.1.5 Advanced Exports . 305

5.12.2 Model Import . 307
5.12.2.1 Module Configuration Import . 307
5.12.2.2 Specify Import Mode and Module Filter 308

5.13 Compare and Merge . 310
5.13.1 Read Only Project Comparison . 310

5.13.1.1 Structure . 310
5.13.1.2 Accessing the API . 310
5.13.1.3 IProjectCompare . 311

© 2025, Vector Informatik GmbH 6 of 387

Contents

5.13.1.4 IProjectCompareConfigBuilder . 311
5.13.1.5 IProjectCompareResult . 311
5.13.1.6 IProjectCompareDifference . 312
5.13.1.7 IDifferenceValues . 312
5.13.1.8 Examples . 312

5.13.2 Auto merge . 313
5.13.2.1 Structure . 313
5.13.2.2 Accessing the API . 313
5.13.2.3 IAutomerge . 314
5.13.2.4 IAutomergeConfigBuilder . 314
5.13.2.5 IAutomergeResult . 315
5.13.2.6 INotAutomergeableDifference . 315
5.13.2.7 Filter Use Cases . 315

5.13.3 Unified Diff . 318
5.13.3.1 Structure . 318
5.13.3.2 Accessing the API . 319
5.13.3.3 IUnifiedDiff . 319
5.13.3.4 IUnifiedDiffConfigBuilder . 319
5.13.3.5 IUnifiedDiffResult . 320

5.14 Project Update API . 320
5.15 Utilities . 321

5.15.1 Converters . 321
5.16 Advanced Topics . 323

5.16.1 Java Development . 323
5.16.1.1 Script Task Creation in Java Code 323
5.16.1.2 Java Code accessing Groovy API 323
5.16.1.3 Java Code in dvgroovy Scripts . 324

6 Data models in detail 325
6.1 MDF model - the raw AUTOSAR data . 325

6.1.1 Naming . 325
6.1.2 The models inheritance hierarchy . 325

6.1.2.1 MIObject and MDFObject . 325
6.1.3 The models containment tree . 326
6.1.4 The ECUC model . 327
6.1.5 Order of child objects . 327
6.1.6 AUTOSAR references . 328
6.1.7 Model changes . 328

6.1.7.1 Transactions . 328
6.1.7.2 Undo/redo . 328
6.1.7.3 Event handling . 329
6.1.7.4 Deleting model objects . 329
6.1.7.5 Access to deleted objects . 329
6.1.7.6 Set-methods . 329
6.1.7.7 Changing child list content . 329
6.1.7.8 Change restrictions . 329

6.2 Post-build selectable . 330
6.2.1 Model views . 330

6.2.1.1 What model views are . 330
6.2.1.2 The IModelViewManager project service 330
6.2.1.3 Variant siblings . 332
6.2.1.4 The Invariant model views . 333

© 2025, Vector Informatik GmbH 7 of 387

Contents

6.2.1.5 Accessing invisible objects . 335
6.2.1.6 IViewedModelObject . 336
6.2.1.7 Default Model View . 336

6.2.2 Change Modes . 336
6.2.2.1 Variant Specific Model Changes 336
6.2.2.2 Variant Common Model Changes 337
6.2.2.3 Default Change Mode . 338

6.3 BswmdModel details . 338
6.3.1 BswmdModel - DefinitionModel . 338

6.3.1.1 Types of DefinitionModels . 339
6.3.1.2 DefRef Getter methods of Untyped Model 340
6.3.1.3 References . 342
6.3.1.4 Post-build selectable with BswmdModel 343
6.3.1.5 Creation ModelView of the BswmdModel 344
6.3.1.6 Lazy Instantiating . 345
6.3.1.7 Optional Elements . 345
6.3.1.8 Class and Interface Structure of the BswmdModel 345
6.3.1.9 BswmdModel Write Access . 346
6.3.1.10 BswmdModel Declaration API . 350

6.3.2 BswmdModel generation . 354
6.3.2.1 DerivativeMapping . 354

6.4 Model Utility Classes . 354
6.4.1 AutosarUtil . 354
6.4.2 AsrPath . 354
6.4.3 TypedAsrPath . 355
6.4.4 AsrObjectLink . 355

6.4.4.1 Restrictions of object links . 356
6.4.5 DefRefs . 356

6.4.5.1 TypedDefRefs . 357
6.4.5.2 DefRef Wildcards . 358

6.4.6 CeState . 359
6.4.6.1 Getting a CeState object . 359
6.4.6.2 IParameterStatePublished . 359
6.4.6.3 IContainerStatePublished . 360

6.5 Model Services . 360
6.5.1 EcucDefinitionAccess . 360

6.5.1.1 Post-build loadable . 361
6.5.1.2 Post-build selectable . 364

6.5.2 EcuConfigurationAccess . 365
6.5.2.1 Post-build loadable . 365
6.5.2.2 Post-build selectable . 368

7 AutomationInterface Content 370
7.1 Introduction . 370
7.2 Folder Structure . 370
7.3 Script Development Help . 370

7.3.1 AutomationInterfaceDocumentation PDF 370
7.3.2 Javadoc HTML Pages . 370
7.3.3 Script Templates . 371

7.4 Libs and BuildLibs . 371
7.5 Beta API Usage . 371
7.6 Introduction . 371

© 2025, Vector Informatik GmbH 8 of 387

Contents

7.7 Automation Script Project Creation . 372
7.8 Project File Content . 372
7.9 Deployment of the Jar File . 372
7.10 IntelliJ IDEA Usage . 372

7.10.1 Show API Specifications (JavaDoc) . 372
7.10.2 Building Projects . 374
7.10.3 Debugging with IntelliJ . 374
7.10.4 Troubleshooting . 375

7.11 Project Usage in different DaVinci Configurator Versions 377
7.12 Script Project Update to a newer Configurator/AutomationInterface version 377
7.13 Build System . 379

7.13.1 Jar Creation and Output Location . 379
7.13.2 Gradle File Structure . 379

7.13.2.1 build.gradle . 379
7.13.2.2 dependencies . 379
7.13.2.3 Static Compilation of Groovy Code 380
7.13.2.4 Gradle Maven publishing of an AutomationProject 381
7.13.2.5 Building Projects . 381
7.13.2.6 Debugging with IntelliJ . 382
7.13.2.7 Script Project Update to a newer Configurator/AutomationInter-

face version . 383
7.14 Build System . 385

7.14.1 Jar Creation and Output Location . 385
7.14.2 Gradle File Structure . 385

7.14.2.1 build.gradle . 385
7.14.2.2 dependencies . 385
7.14.2.3 Static Compilation of Groovy Code 386
7.14.2.4 Gradle Maven publishing of an AutomationProject 387

© 2025, Vector Informatik GmbH 9 of 387

1 Release Version Alignment
The table shows the release version alignments of the AutomationInterface and the DaVinci Con-
figurator 6.

• AutomationInterface v3.0.0 - DaVinci Configurator v0.3.1

• AutomationInterface v3.1.0 - DaVinci Configurator v0.4.0

• AutomationInterface v3.2.0 - DaVinci Configurator v0.5.0

• AutomationInterface v3.3.0 - DaVinci Configurator v0.6.0

• AutomationInterface v3.4.0 - DaVinci Configurator v0.7.0

• AutomationInterface v3.5.0 - DaVinci Configurator v6.0.0

• AutomationInterface v3.6.0 - DaVinci Configurator v6.1.0

• AutomationInterface v3.7.0 - DaVinci Configurator v6.2.0

• AutomationInterface v3.8.0 - DaVinci Configurator v6.2.0

© 2025, Vector Informatik GmbH 10 of 387

2 Introduction

2.1 General
With the usage of the AutomationInterface of the DaVinci Configurator 6, a user can create scripts,
which will be executed in processing component of the DaVinci Configurator 6. AI scripts support
many features like:

• Create projects

• Update projects

• Manipulate the data model with access to the whole AUTOSAR model

• Generate code

• Executed repetitive tasks with code, without user interaction

• More

2.2 Facts
Installation The CFG6 can execute user defined scripts out of the box. No additional scripting
language installation is required by the customer.

Debugging Support Script projects can be debugged via IntelliJ IDEA. See Automation Build
Gradle Documentation.

Code Completion The AutomationInterface supports code completion for Groovy, Kotlin and
Java. CodeCompletion is only supported with IntelliJ IDEA.
1

1See Automation Build Gradle Documentation for details.

© 2025, Vector Informatik GmbH 11 of 387

3 Getting started with Script Development

3.1 General
This chapter provides a brief introduction to getting started with automation scripting. Please be
aware that there are specific coding conventions and limitations to follow when writing scripts.

These are outlined in chapter 4.5 on page 25.

3.2 Automation Script Development Types
The DaVinci Configurator 6 supports two types of automation scripts

• Script File (*.dv.groovy) it provides the simplest way to implement an automation
script. When the script gets bigger, you should migrate to a script project.

To create a script, proceed with chapter 3.4.

To get more information about script files, proceed with chapter 3.5 on the following page.

• Script Project is the more efficient way to create and maintain a script.

It is the recommended way to develop scripts, containing more tasks or multiple classes.
It provides IDE support for Code completion, Syntax highlighting, API Documentation, De-
bug support, Build support.

To create a script, proceed with chapter 3.4.

To get more information about the script project, proceed with chapter 3.6 on the following
page.

3.3 Script
An Automation Script in the DaVinci Configurator 6 automates tasks such as creating and up-
dating projects, manipulating the data model, and generating code, with DaVinci Configurator 6
serving as the execution engine for these scripts.

For details to the script structure, see chapter 4.3 on page 23.

3.4 Script Creation
To create a script, please use the CLI command as shown at 3.1 on the following page.

© 2025, Vector Informatik GmbH 12 of 387

Chapter 3. Getting started with Script Development

Usage: dvcfg -b automation setup [-h] (-d | -p) <path >

Description :
Set up a script or dvgroovy project environment in the specified location .

Parameters :
* <path > The location where the script or dvgroovy project should be

created .

Options :
* -d, --dvgroovy Create a dvgroovy project environment .
* -p, --project Create a script project environment .

-h, --help Display the help.

Listing 3.1: Creates a script project or script file via CLI

3.5 Script File
The script file is the simplest way to implement an automation script. It could be sufficient
for small tasks and if the developer does not require full IDE support during implementing the
script.

3.6 Script Project
The script project is the preferred way to develop an automation script, if the content is more than
one simple task. A script project is an IDE project (IntelliJ recommended), with compile bindings
to the DaVinci Configurator AutomationInterface. It is also called "Automation Script Project"
throughout this document.

The DaVinci Configurator 6 will load a script project as a single *.jar file. So the script project
must be built and packaged into a *.jar file before it can be executed by the DaVinci Configurator
6.

Jar Location The Jar location of the build script project is <ProjectDir>/build/libs. Gra-
dle will automatically create the directories during the build and will generate the built *.jar
file.

Prerequisites Before you start, please make sure that the following items are available on your
system:

• CFG6: You need the DaVinci Configurator 6 available on your system.

• Java JDK: For the development with the IntelliJ a "Java SE Development Kit 21" (JDK
21) is required. Please install the JDK 21 as described in chapter 3.6.1 on the next page.

• IDE: For the script project development the recommended IDE is IntelliJ. Please install
IntelliJ as described in chapter 3.6.2 on the following page.

• Build system: To build the script project the build system Gradle is required. See chapter
3.6.2 on page 15 for installation instructions.

© 2025, Vector Informatik GmbH 13 of 387

Chapter 3. Getting started with Script Development

3.6.1 Java JDK Setup
Install a JDK 21 on your system. The Java JDK website provides download versions for different
systems. Download an appropriate version and make sure you get the x64 version.

The JDK is needed for the Java Compiler for IntelliJ and Gradle.

3.6.2 IntelliJ IDEA Setup
Install IntelliJ on your system. The IntelliJ IDEA website provides download versions for different
applications.

Code completion and compilation additionally require that the Project SDK is set. Therefore,
open the File -> Project Structure Dialog in IntelliJ and switch to the settings dialog for
Project. If not already available, set an appropriate option for the Project SDK. Please set the
value to a valid Java JDK (see 3.6.1).

Note: Do not select a JRE.

Figure 3.1: Project SDK Setting

To enable building of projects, ensure that the Gradle JVM is set.Therefore, open the File ->
Settings Dialog in IntelliJ and find the settings dialog for Gradle.If not already available, set an
appropriate option for the Gradle JVM. Please set the value to Project SDK to use the selected
SDK above.

Note: Do not select a JRE.

If you do not have the Gradle settings, please make sure that the Gradle plugin inside of IntelliJ
is installed. Open the File -> Settings Dialog then Plugins and select the Gradle plugin.

© 2025, Vector Informatik GmbH 14 of 387

https://www.oracle.com/java/technologies/downloads/#jdk21-windows
https://www.jetbrains.com/idea/

Chapter 3. Getting started with Script Development

Figure 3.2: Gradle JVM Setting

Build System As build system Gradle is used.If you use IntelliJ as your IDE you can open the
gradle view, View -> Tool Windows -> Gradle, to find the required gradle build tasks.

If your system has internet access, you can use the default Gradle Build System provided by the
DaVinci Configurator 6. In this case, you do not have to install Gradle. If you are a Vector
internal user, you could also skip the Gradle installation.

If you want to use your own Gradle Build System install it on your system. The Gradle website
provides the required download version for the Gradle Build System.

Please download the version 9.2.1.

See the Automation Build Gradle Documentation for more details on the Build System.

3.7 Script Testing
To ensure the correctness and stability of your automation scripts, testing is highly recommended.

Details on how to write and execute tests can be found in the Automation Build Gradle Docu-
mentation.

3.8 Script Debugging
There are two ways to debug your script:

• Using the Testing Framework (recommended).

• Using Remote Debugging.

© 2025, Vector Informatik GmbH 15 of 387

https://gradle.org/install/

Chapter 3. Getting started with Script Development

3.9 Script Location
A script location is a directory that contains built script projects *.jar or script files *.dv.groovy.

For more information, proceed with chapter 4.3.2 on page 24.

3.10 Kotlin Support
If you want to develop your scripts in Kotlin, just add the Kotlin JVM and Kotlin SAM-With-
Receiver Plugins like in the snippet below:

plugins {
// Other plugins ...
id "org. jetbrains . kotlin .jvm" version " $KT_VERSION "
id "org. jetbrains . kotlin . plugin .sam.with. receiver " version " $KT_VERSION "

}

Listing 3.2: Application of relevant Kotlin plugins

You can then create a class that implements IScriptFactory in src/main/kotlin:

import com. vector .cfg. automation . scripting .api. IScriptCreationApi
import com. vector .cfg. automation . scripting .api. IScriptFactory
import com. vector .cfg. automation . scripting .api. IScriptTaskTypeApi . DV_APPLICATION

class MyKotlinScript : IScriptFactory {
override fun createScript (creationApi : IScriptCreationApi) {

creationApi . scriptTask (" TaskName ", DV_APPLICATION) {
code {

// Task execution code here
}

}
}

}

Listing 3.3: MyKotlinScript.kt in /src/main/kotlin

Remarks:

• Mixing Groovy and Kotlin source files in a single script project is currently not supported.

• Nullability info on PAI API will be enhanced in the future. This may reveal missing null
checks when updating the targeted CFG6 version

– You can turn these errors into warnings by adding the following snippet in your build.gradle
file:

import org. jetbrains . kotlin . gradle .tasks. KotlinCompile

tasks. withType (KotlinCompile). configureEach {
it. compilerOptions . freeCompilerArgs .add("-Xnullability - annotations =@org.

jspecify . annotations :warn")
}

Listing 3.4: Turn Nullability Errors into Warnings in build.gradle

• Mixing Groovy and Kotlin source files in a single script project is not natively supported
by Gradle. To be able to use your Kotlin classes from your Groovy code, you can add the
following snippet in your build.gradle file:

© 2025, Vector Informatik GmbH 16 of 387

Chapter 3. Getting started with Script Development

tasks.named(" compileGroovy ", GroovyCompile) {
it. classpath += files(sourceSets .main. kotlin . classesDirectory)

}

Listing 3.5: Allow Groovy code to call Kotlin code in build.gradle

If you want to call Groovy code from your Kotlin code, you need to add the following snippet in
your build.gradle file:

tasks.named(" compileGroovy ") {
classpath = sourceSets .main. compileClasspath

}

tasks.named(" compileKotlin ") {
dependsOn (" compileGroovy ")
libraries .from(files(sourceSets .main. groovy . classesDirectory))

}

Listing 3.6: Allow Kotlin code to call Groovy code in build.gradle

Do note that these snippets are mutually exclusive. You can only use one of them depending on
the direction of the calls.

3.11 List Script Task
To list all script tasks, please use the CLI command as shown at 3.7.

Usage: dvcfg -b automation list [-h] -b=<folder > [-p=<file >] [-l=<location >[,<
location >...]]... [--no -save]

Description :
List automation tasks from a specific project , bsw -package , location , or from all

sources .

Options :
* -b, --bsw - package =<folder > Directory of the BSW package .

-p, --project =<file > The . dvjson file of the project .
-l, --location =<location >[,< location >...] List of folders containing script

files.
E.g.: -l .\\ locationA ,.\\ locationB

--no -save Prevent saving the project to disk.
-h, --help Display the help.

Listing 3.7: CLI command to list all script tasks of the current DaVinci Configurator session

3.12 Run Script Task
To execute a script task, please use the CLI command as shown at 3.8 on the next page.

Note: In case that the script tasks modifications shall not be saved to the project, you can use the
–no-save option.

© 2025, Vector Informatik GmbH 17 of 387

Chapter 3. Getting started with Script Development

Usage: dvcfg -b automation run [-h] -b=<folder > [-p=<file >] -t=<task >[,<task >...]
[-t=<task >[,<task >...]]... [-a=<arg >]...

[-l=<location >[,< location >...]]... [--no -save]

Description :
Run automation tasks with arguments .

Options :
* -b, --bsw - package =<folder > Directory of the BSW package .

-p, --project =<file > The . dvjson file of the project .
* -t, --task=<task >[,<task >...] List of script tasks to execute .

E.g.: -t task1 ,task2
-a, --arg=<arg > Define a set of arguments specific

to a single task.
E.g.: -a 'task1 ' -a '--name=str1 --

value =1' -a 'task2 ' -a '-i 1,2,3
'

-l, --location =<location >[,< location >...] List of folders containing script
files.

E.g.: -l .\\ locationA ,.\\ locationB
--no -save Prevent saving the project to disk.

-h, --help Display the help.

Listing 3.8: Run a script task via CLI

You can modify the implementation according to your needs. For the AutomationInterface API
Reference see chapter 5 on page 28.

3.13 Add Script Location To Project
To add a script location to DaVinci Configurator 6 project, please use the CLI command as shown
at 3.9.
Usage: dvcfg -b automation add [-h] -p=<file > -b=<folder > -l=<location >[,< location

>...] [-l=<location >[,< location >...]]...
[--no -save]

Description :
Add locations containing automation tasks.

Options :
* -p, --project =<file > The . dvjson file of the project .
* -b, --bsw - package =<folder > Directory of the BSW package .
* -l, --location =<location >[,< location >...] List of folders containing script

files.
E.g.: -l .\\ locationA ,.\\ locationB

--no -save Prevent saving the project to disk.
-h, --help Display the help.

Listing 3.9: Adds a script location to a DaVinci Configurator project via CLI

3.14 Remove Script Location From Project
To remove a script location from a DaVinci Configurator 6 project, please use the CLI command
as shown at 3.10 on the following page.

© 2025, Vector Informatik GmbH 18 of 387

Chapter 3. Getting started with Script Development

Usage: dvcfg -b automation remove [-h] -p=<file > -b=<folder > -l=<location >[,<
location >...] [-l=<location >[,

<location >...]]... [--no -save]

Description :
Remove locations containing automation tasks.

Options :
* -p, --project =<file > The . dvjson file of the project .
* -b, --bsw - package =<folder > Directory of the BSW package .
* -l, --location =<location >[,< location >...] List of folders containing script

files.
E.g.: -l .\\ locationA ,.\\ locationB

--no -save Prevent saving the project to disk.
-h, --help Display the help.

Listing 3.10: Removes a script location to a DaVinci Configurator project via CLI

© 2025, Vector Informatik GmbH 19 of 387

Chapter 3. Getting started with Script Development

3.15 Logging Configuration
Logs intended for the user can be seen in the CLI output. But here, not all detailed development
logs are visible. To view detailed logs of the CFG6 ConfigCore, you can find them in the following
folder:

• Windows: %LocalAppData%\Vector\DaVinci\dvcfg\logs

• Linux: $XDG_STATE_HOME/Vector/DaVinci/dvcfg/logs

The Log4J configuration file specifies which logging level is assigned to each class or package. The
logging level is applied to the specified element and automatically inherited by all child packages
and classes.

The logging configuration of the DaVinci Configurator 6 can be extended with custom Log4J
configuration file fragments.

<Configuration >
<Loggers >

<Logger name="your. generator " level="trace">
<AppenderRef ref=" LiveLogAppender "/>

</ Logger >
</ Loggers >

</ Configuration >

Listing 3.11: Log4J configuration fragment example

• The logger for the custom your.generator package is set to trace.

– The LiveLogAppender is attached to the your.generator logger, which additionally
prints its output to the CLI console.

NOTE: The CLI console output will never show log messages below the info level, those are only
available in the DaVinci Configurator 6 core logfile (see 3.15).

The monitorInterval attribute can be set on the Configuration element to enable automatic
reloading of Log4J configuration changes while ConfigCore is running.

Log4J configuration fragments can be applied using one or both of the following methods:

• Place the configuration in the <user home directory>/.DaVinciCfg/log4j.xml file, and/or

• Specify the configuration file path in the DVCFG_LOGGING_CONFIG environment variable.

3.15.1 scriptLogger

The scriptLogger is configured with the info level by default and can be reconfigured with the
following configuration:

<?xml version ="1.0" encoding ="UTF -8"?>
<Configuration >

<Loggers >
<Logger name="com. vector .cfg.user.com. vector .cfg. automation . script " level=

"debug">
</Logger >

</Loggers >
</ Configuration >

Listing 3.12: Sample of custom log4j.xml to adjust log level

© 2025, Vector Informatik GmbH 20 of 387

https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html#configuration-attribute-monitorInterval

Chapter 3. Getting started with Script Development

In the following example, only messages printed via scriptLogger.info(...) and scriptLog-
ger.debug(...) will be logged to the detailed log file (see 3.15 on the preceding page). Messages
printed via scriptLogger.trace(...) will be ignored.

import static com. vector .cfg. automation .api. ScriptApi .*
daVinci {

scriptTask ("Task1", DV_APPLICATION) {
code {

scriptLogger .info "!!! First info message !!!"
scriptLogger .debug "!!! First debug message !!!"
scriptLogger .trace "!!! First trace message !!!"

}
}

}

Listing 3.13: Script with log messages at different levels

The CLI console output will show the following entries:

[INFO] Executing script task " script :Task1"
[INFO] !!! First info message !!!
[INFO] Execution of script task " script :Task1" successfully finished .

Listing 3.14: CLI Log

The DaVinci Configurator 6 log file will contain the following entries:

INFO script - Executing script task " script :Task1"
INFO script - !!! First info message !!!
DEBUG script - !!! First debug message !!!
INFO script - Execution of script task " script :Task1"

successfully finished .

Listing 3.15: DaVinci Configurator 6 Log

© 2025, Vector Informatik GmbH 21 of 387

4 AutomationInterface Architecture

4.1 Components
The DaVinci Configurator 6 consists of three components:

• Core Components

• AutomationInterface (AI) - also called Automation API

• Scripting Engine

The other part is the script provided by the user.

The scripting engine will load the script, and the script uses the AutomationInterface to perform
tasks. The AutomationInterface will translate the requests from the script into Core component
calls.

Figure 4.1: DaVinci Configurator components and interaction with scripts

The separation of the AutomationInterface and the Core components has multiple benefits:

• Stable API for script writers

– Including checks, that the API will not break in following releases

• Well defined and documented API

• Abstraction from the internal heavy lifting

– This eases the usage for the user, because the automation interfaces are tailored to the
use cases.

PublishedApi All AutomationInterface classes are marked with a special annotation to highlight
the fact that it is part of the published API. The annotation is called @PublishedApi.

So every class marked with @PublishedApi can be used by the client code. But if a class is not
marked with @PublishedApi or is marked with @Deprecated it should not be used by any client
code, nor shall a client call methods via reflection or other runtime techniques.

© 2025, Vector Informatik GmbH 22 of 387

Chapter 4. AutomationInterface Architecture

You should not access DaVinci Configurator private or package private classes, methods or
fields.

4.2 Languages
The DaVinci Configurator provides out of the box language support for:

• Java

• Groovy

• Kotlin

The recommended scripting language is Groovy which shall be preferred by all users.

4.3 Script Structure
A script always contains one or more script tasks. A script is represented by an instance of
IScript, the contained tasks are instances of IScriptTask.

Figure 4.2: Structure of scripts and script tasks

You create the IScript and IScriptTask instance with the API described in chapter 5.2 on
page 29.

The script task type (IScriptTaskType) defines where the task could be executed. It also defines
the signature of the task’s code {} block. See chapter 5.3 on page 33 for the available script task
types.

© 2025, Vector Informatik GmbH 23 of 387

Chapter 4. AutomationInterface Architecture

4.3.1 Script Tasks
Script tasks are the executable units of scripts, which are executed at certain points in the DaVinci
Configurator (specified by the IScriptTaskType). Every script task has a code {} block, which
contains the logic to execute.

4.3.2 Script Locations
Script locations define where script files are loaded from. The script locations can be defined by
the user, but there are also pre-set script locations.

Pre-set script locations

• BSW-Package based

– <BSW-PKG>/Components/<MSN>/AutomationDvC6

User definable script locations

• Project based

– via CLI from anywhere on the file system

4.4 Script loading
All scripts contained in the script locations are automatically loaded by the DaVinci Configurator.
If new scripts are added to script locations these scripts are automatically loaded.

If a script changes during runtime of the DaVinci Configurator the whole script is reloaded and
then executable, without a restart of the tool or a reload of the project.

This enables script development during the runtime of the DaVinci Configurator

• No project reload

• No tool restart

• Faster feedback loops

Note: The *.jar artifact file from a script project should be updated by the Gradle build system,
not by hand. Because the Java VM is holding a lock to the file. If you try to replace the file in
the explorer you will get an error message.

4.4.1 Internal Script Reload Behavior
Your script can be loaded and unloaded automatically multiple times during the execution of the
DaVinci Configurator. More precise, when a script is currently not used and there are memory
constraints your script will be automatically unloaded.

If the script will be executed again, it is automatically reloaded and then executed. So it is possible
that the script initialization code is called multiple times in the DaVinci Configurator lifecycle.
But this is no issue, because the script and the tasks shall not have any internal state during
initialization.

© 2025, Vector Informatik GmbH 24 of 387

Chapter 4. AutomationInterface Architecture

Memory Leak Prevention The feature above is implemented to prevent leaking memory from
an automation script into the DaVinci Configurator memory. So when the memory run low, all
unused scripts are unloaded, which will also free leaked memory of scripts.

But this does not mean that is impossible to construct memory leaks from an automation script.
E.g. Open file handles without closing them will still cause a memory leak.

4.5 Script Coding Conventions and Constraints
This section describes conventions, which you are advised to apply.

Requirement Levels - Wording

• Shall: This word, or the terms "Mandatory", "Required" or "Must", mean that the rule or
convention is an absolute requirement.

• Shall not: This word, or the terms "Must not" mean that the rule or convention is an absolute
prohibition.

• Should: This word, or the adjective "Recommended", mean that there may exist valid reasons
in particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

• Should not: This phrase, or the phrase "Not recommended" mean that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

• May: This word, or the adjective "Optional", mean that an item is truly optional.

See also "RFC 2119: Key words for use in RFCs to Indicate Requirement Levels"1.

4.5.1 Usage of static fields
You shall not use any static fields in your script code or other written classes inside of your
project. Except static final constants of simple immutable types like (normally compile time
constants):

• int

• boolean

• double

• String

• ...

Static fields will cause memory leaks, because the fields are not garbage collected. Example:

1https://www.ietf.org/rfc/rfc2119.txt

© 2025, Vector Informatik GmbH 25 of 387

https://www.ietf.org/rfc/rfc2119.txt

Chapter 4. AutomationInterface Architecture

scriptTask ("Name") {
code {

MyClass . leakVariable .add(" Leaked Memory ")
}

}

class MyClass {
static List leakVariable = []

}

Listing 4.1: Static field memory leak

The use of static fields of the AutomationInterface is not allowed.

4.5.2 Usage of Outer Closure Scope Variables
The same static field rule applies to variables passed from outer Closure scopes into a script task
code{} block. You shall not cache/save data into such variables.

Example:

scriptTask ("Name"){
def invalidVariable = [] // List

code{
invalidVariable .add(" Leaked Memory ")

}

}

Listing 4.2: Memory leak with closure variable

4.5.3 States over script task execution
You shall not hold or save any states over multiple script task executions in your classes.

The script task should be state less. All states are provided by the Automation API or the data
models.

If you need to cache data over multiple executions, see chapter 5.4.11 on page 58 for a solu-
tion.

4.5.4 Multithreading Support
A script task shall not create any Thread, Executor, ThreadPool or ForkJoinPool instances.
Multithreading in automation scripts is not supported. Using multiple threads in automation
scripts may lead to unexpected side effects, such as issues with live logging and debugging. If par-
allel execution is needed, different script tasks can be executed using multiple CLI instances.

4.5.5 Usage of DaVinci Configurator private Classes Methods or Fields
A script task should not call or rely on any non published API or private (also package private)
classes, methods or fields. You also should not use any reflection techniques to reflect about
Configurator internal APIs. Otherwise it is not guaranteed that your script will work with other
DaVinci Configurator versions. See 4.1 on page 22 for details about PublishedApi.

© 2025, Vector Informatik GmbH 26 of 387

Chapter 4. AutomationInterface Architecture

But it is valid to use reflection for your own script code.

© 2025, Vector Informatik GmbH 27 of 387

5 AutomationInterface API Reference

5.1 Introduction
This chapter contains the description of the DaVinci Configurators - AutomationInterface. The
figure 5.1 shows the APIs and the containment structure of the different APIs.

The components have a hierarchical order, where and when the components are usable. When a
component is contained in another the component is only usable, when the other is active.

Figure 5.1: The API overview and containment structure

The components have an hierarchical order, where and when the components are usable. When a
component is contained in another the inner component is only usable, if the outer component is
active.

Usage examples:

• The Generation API is only usable inside of a loaded project

• The Project creation API is only usable outside of a loaded project

© 2025, Vector Informatik GmbH 28 of 387

Chapter 5. AutomationInterface API Reference

5.2 Script Creation
This section lists the APIs to create, execute and query information for script tasks. The sections
document the following aspects:

• Script task creation

• Description and help texts

• Task executable query

5.2.1 Script Task Creation
To create a script task you have to call one of the scriptTask() methods. The last parameter
of the scriptTask methods can be used to set additional options of the task. Every script task
needs one IScriptTaskType. See chapter 5.3 on page 33 for all available task types.

The code{ } block is required for every IScriptTask. The block contains the code, which is
executed when the task is executed.

Script Task with default Type The method scriptTask() will create a script task.
If no script task type is given, the IScriptTaskType DV_PROJECT is used.

scriptTask (" TaskName "){
code{

// Task execution code here
}

}

Listing 5.1: Task creation with default type

Script Task with Task Type You could also define the used IScriptTaskType at the script-
Task() methods. The methods

• scriptTask(String, IApplicationScriptTaskType, Action)

• scriptTask(String, IProjectScriptTaskType, Action)

will create an script task for passed IScriptTaskType. The two methods differentiate, if a project
is required or not. See chapter for all available task types 5.3 on page 33

scriptTask (" TaskName ", DV_APPLICATION){
code{

// Task execution code here
}

}

Listing 5.2: Task creation with TaskType Application

scriptTask (" TaskName ", DV_PROJECT){
code{

// Task execution code here
}

}

Listing 5.3: Task creation with TaskType Project

© 2025, Vector Informatik GmbH 29 of 387

Chapter 5. AutomationInterface API Reference

Multiple Tasks in one Script It is also possible to define multiple tasks in one script.

scriptTask (" TaskName "){
code{ }

}

scriptTask (" SecondTask "){
code{ }

}

Listing 5.4: Define two tasks is one script

5.2.1.1 Script Creation with IDE Code Completion Support

Due to the fact that the IDE can not know which API is available inside of a script file, a glue
code is needed to tell the IDE, what API is callable inside of a script file.

The ScriptApi.daVinci(Action) method enables the IDE code completion support in a script
file. You have to write the daVinci{ } block and inside of the block the code completion is
available. The following sample shows the glue code for the IDE:

import static com. vector .cfg. automation .api. ScriptApi .*

// daVinci enables the IDE code completion support
daVinci {

// Normal script code here
scriptTask (" TaskName "){

code{
// Script task execution code here

}
}

}

Listing 5.5: Script creation with IDE support

The daVinci{} block is only required for code completion support in the IDE. It has no effect
during runtime, so the daVinci{} is optional in script files (.dv.groovy)

5.2.1.2 Script Task isExecutableIf

You can set an isExecutableIf handler, which is called before the IScriptTask is executed. The
code can evaluate, if the IScriptTask shall be executable. If the handler returns true, the code
of the IScriptTask is executable, otherwise false. See class IExecutableTaskEvaluator for
details.

The Closure isExecutable has to return a boolean. The passed arguments to the closure are the
same as the code{ } block arguments.

Inside of the Closure a property notExecutableReasons is available to set reasons why it is not
executable. It is highly recommended to set reasons, when the Closure returns false.

© 2025, Vector Informatik GmbH 30 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName "){

isExecutableIf { taskArgument ->
// Decide , if the task shall be executable
if(taskArgument == " CorrectArgument "){

return true
}
notExecutableReasons . addReason "The argument is not 'CorrectArgument '"
return false

}

code{ taskArgument ->
// Task execution code here

}
}

Listing 5.6: Task with isExecutableIf

5.2.2 Description and Help
Script Description The script can have an optional description text. The description shall list
what this script contains. The method scriptDescription(String) sets the description of the
script.

The description shall be a short overview. The String can be multiline.

// You can set a description for the whole script
scriptDescription "The Script has a description "

scriptTask ("Task"){
code {}

}

Listing 5.7: Script with description

Task Description A script task can have an optional description text. The description shall
help the user of the script task to understand what the task does. The method taskDescrip-
tion(String) sets the description of the script task.

The description shall be a short overview. The String can be multiline.

scriptTask (" TaskName "){
taskDescription "The description of the task"

code{ }
}

Listing 5.8: Task with description

Task Help A script task can also have an optional help text. The help text shall describe in
detail what the task does and when it could be executed. The method taskHelp(String) sets
the help of the script task.

The help shall be elaborate text about what the task does and how to use it. The String can be
multiline.

© 2025, Vector Informatik GmbH 31 of 387

Chapter 5. AutomationInterface API Reference

The help text is automatically expanded with the help for user defined script task arguments, see
IScriptTaskBuilder.newUserDefinedArgument(String, Class, String).

scriptTask (" TaskName "){
taskDescription "The short description of the task"
taskHelp """

The long help text
of the script with multiple lines

And paragraphs ...
""". stripIndent ()

// stripIndent () will strip the indentation of multiline strings
// The three """ are needed , if you want to write a multiline string

code{ }
}

Listing 5.9: Task with description and help text

© 2025, Vector Informatik GmbH 32 of 387

Chapter 5. AutomationInterface API Reference

5.3 Script Task Types
The IScriptTaskType instances define where a script task is executed in the DaVinci Configurator.
The types also define the arguments passed to the script task execution and what return type an
execution has.

Every script task needs an IScriptTaskType. The type is set during creation of the script
tasks.

Interfaces All task types implement the interface IScriptTaskType. The following figure show
the type and the defined sub types:

Figure 5.2: IScriptTaskType interfaces

5.3.1 Available Types
The class IScriptTaskTypeApi defines all available IScriptTaskTypes in the DaVinci Configura-
tor. All task types start with the prefix DV_.

None at parameters and return types mean, that any arguments could be passed and return to or
from the task. Normally it will be nothing. The arguments are used, when the task is called in
unit tests for example.

ScriptTaskType input parameters can get accessed via script by adding them to the code block
e.g. code{ List<Object> inputParameter -> inputParameter }

5.3.1.1 Application Types

Application The type DV_APPLICATION is for application wide script tasks. A task could cre-
ate/open/close/update projects. Use this type, if you need full control over the project handling,
or you want to handle multiple project at once.

© 2025, Vector Informatik GmbH 33 of 387

Chapter 5. AutomationInterface API Reference

Name Application
Code identifier DV_APPLICATION
Task type interface IApplicationScriptTaskType
Parameters None
Return type None
Execution Standalone

5.3.1.2 Project Types

Project The type DV_PROJECT is for project script tasks. A task could access the currently loaded
project. Manipulate the data, generate and save the project. This is the default type, if no other
type is specified.

Name Project
Code identifier DV_PROJECT
Task type interface IProjectScriptTaskType
Parameters None
Return type None
Execution Standalone

Module activation The type DV_ON_MODULE_ACTIVATION allows the script to hook any Module
Activation in a loaded project. Every DV_ON_MODULE_ACTIVATION task is automatically executed,
when an "Activate Module" operation is executed. The script task is called after the module was
created.

Name Module activation
Code identifier DV_ON_MODULE_ACTIVATION
Task type interface IProjectScriptTaskType
Parameters MIModuleConfiguration moduleConfiguration
Return type Void
Execution Automatically during module activation

Module deactivation The type DV_ON_MODULE_DEACTIVATION allows the script to hook any Mod-
ule Deactivation in a loaded project. Every DV_ON_MODULE_DEACTIVATION task is automatically
executed, when an "Deactivate Module" operation is executed. The script task is called before the
module is deleted.

Name Module deactivation
Code identifier DV_ON_MODULE_DEACTIVATION
Task type interface IProjectScriptTaskType
Parameters MIModuleConfiguration moduleConfiguration
Return type Void
Execution Automatically during module deactivation

5.3.1.3 UI Types

Editor selection The type DV_EDITOR_SELECTION allows the script task to access the currently
selected element of an editor. The task is executed in context of the selection and is not callable
by the user without an active selection.

© 2025, Vector Informatik GmbH 34 of 387

Chapter 5. AutomationInterface API Reference

Name Editor selection
Code identifier DV_EDITOR_SELECTION
Task type interface IProjectScriptTaskType
Parameters MIObject selectedElement
Return type Void
Execution In context menu of an editor selection

Editor multiple selections The type DV_EDITOR_MULTI_SELECTION allows the script task to ac-
cess the currently selected elements of an editor. The task is executed in context of the selection
and is not callable by the user without an active selection. The type is also usable when the
DV_EDITOR_SELECTION apply.

Name Editor multiple selections
Code identifier DV_EDITOR_MULTI_SELECTION
Task type interface IProjectScriptTaskType
Parameters List<MIObject> selectedElements
Return type Void
Execution In context menu of an editor selection

Those ScriptTaskTypes can be executed via selecting Configuration Elements in the editor. See
usage: 5.3

Example: Select at least two configuration elements in the editor.

Figure 5.3: Access Editor Selection

scriptTask (" EditorMultiSelectionTask ", DV_EDITOR_MULTI_SELECTION) {

// Add the selected elements as closure parameters
code { List <MIObject > selectedElements ->

selectedElements
}

}

Listing 5.10: Usage of ScriptTaskType: DV_EDITOR_MULTI_SELECTION

5.3.1.4 Generation Types

Generation Step The type DV_GENERATION_STEP defines that the script task is executable as
a GenerationStep during generation. The user has to explicitly create an GenerationStep in the
Project Settings Editor, which references the script task.

© 2025, Vector Informatik GmbH 35 of 387

Chapter 5. AutomationInterface API Reference

Name Generation Step
Code identifier DV_GENERATION_STEP
Task type interface IProjectScriptTaskType
Parameters EGenerationPhaseType phase

EGenerationProcessType processType
IValidationResultSink resultSink

Return type Void
Execution Selected as GenerationStep in GenerationProcess

See chapter 5.7.2 on page 134 for usage samples.

Generation Process Start The type DV_ON_GENERATION_START defines that the script task is
automatically executed when the generation is started.

Name Generation Process Start
Task type interface IProjectScriptTaskType
Code identifier DV_ON_GENERATION_START
Parameters List<EGenerationPhaseType> generationPhases

List<IGenerator> executedGenerators
Return type Void
Execution Automatically before GenerationProcess

See chapter 5.7.2 on page 134 for usage samples.

Generation Process End The type DV_ON_GENERATION_END defines that the script task is auto-
matically executed when the generation has finished.

Name Generation Process End
Code identifier DV_ON_GENERATION_END
Task type interface IProjectScriptTaskType
Parameters EGenerationProcessResult processResult

List<IGenerator> executedGenerators
Return type Void
Execution Automatically after GenerationProcess

See chapter 5.7.2 on page 134 for usage samples.

© 2025, Vector Informatik GmbH 36 of 387

Chapter 5. AutomationInterface API Reference

5.4 Script Task Execution
This section lists the APIs to execute and query information for script tasks. The sections document
the following aspects:

• Script task execution

• Logging API

• Path resolution

• Error handling

• User defined classes and methods

• User defined script task arguments

5.4.1 Execution Context
Every IScriptTask could be executed, and retrieve passed arguments and other context infor-
mation. This execution information of a script task is tracked by the IScriptExecutionCon-
text.

The IScriptExecutionContext holds the context of the execution:

• The script task arguments

• The current running script task

• The current active script logger

• The active project, if existing

• The script temp folder

• The script task user defined arguments

The IScriptExecutionContext is also the entry point into every automation API, and provide
access to the different API classes. The classes are described in their own chapters like IProjec-
tHandlingApiEntryPoint.

The context is immediately active, when the code block of an IScriptTask is called.

Groovy Code The client sample illustrates the seamless usage of the IScriptExecutionContext
class in Groovy:

scriptTask (" taskName ", DV_APPLICATION){
code{ // The IScriptExecutionContext is automatically active here

// Call methods of the IScriptExecutionContext
def logger = scriptLogger
def temp = paths. tempFolder

// Use an automation API
generation {

// Now the Generation API is active
}

}
}

Listing 5.11: Access automation API in Groovy clients by the IScriptExecutionContext

© 2025, Vector Informatik GmbH 37 of 387

Chapter 5. AutomationInterface API Reference

In Groovy the IScriptExecutionContext is automatically activated inside the code{} block.

Java Code For Java clients the method IScriptExecutionContext.getInstance(Class) pro-
vides access to the API classes, which are seamlessly available for the groovy clients:

// Java code
// Passed from the script task:
IScriptExecutionContext scriptContext = ...;

// Retrieve automation API in Java
IGenerationApi generation = scriptContext . getInstance (IGenerationApiEntryPoint .

class). getGeneration ();

// In groovy code it would be:
generation {

}

Listing 5.12: Access to automation API in Java clients by the IScriptExecutionContext

In Java code the context is always the first parameter passed to every task code (see IScript-
TaskCode).

5.4.1.1 Code Block Arguments

The code block can have arguments passed into the script task execution. The arguments passed
into the code{ } block are defined by the IScriptTaskType of the script task. See chapter 5.3 on
page 33 for the list of arguments (including types) passed by each individual task type.

scriptTask ("Task"){
code{ arg1 , arg2 , ... -> // arguments here defined by the IScriptTaskType

}
}

scriptTask ("Task2"){
// Or you could specify the type of the arguments for code completion
code{ String arg1 , List <Double > arg2 ->
}

}

Listing 5.13: Script task code block arguments

The arguments can also can be retrieved with IScriptExecutionContext.getScriptTaskArguments().

5.4.2 Task Execution Sequence
The figure 5.4 on the next page shows the overview sequence when a script task gets executed
by the user and the interaction with the IScriptExecutionContext. Note that the context gets
created each time the task is executed.

© 2025, Vector Informatik GmbH 38 of 387

Chapter 5. AutomationInterface API Reference

Figure 5.4: Script Task Execution Sequence

5.4.3 Script Path API during Execution
Script tasks could resolve relative and absolute file system paths with the IAutomationPath-
sApi.

As entry point call paths in a code{ } block (see IScriptExecutionContext.getPaths()).

There are multiple ways to resolve relative paths:

• by Script folder

• by Temp folder

• by BSW Package folder

• by Project folder

• by any parent folder

© 2025, Vector Informatik GmbH 39 of 387

Chapter 5. AutomationInterface API Reference

5.4.3.1 Path Resolution by Parent Folder

The resolvePath(Path parent, Object path) method resolves a file path relative to supplied
parent folder.

This method converts the supplied path based on its type:

• A CharSequence, including String or GString. Interpreted relative to the parent directory.
A string that starts with file: is treated as a file URL.

• A File: If the file is an absolute file, it is returned as is. Otherwise, the file’s path is
interpreted relative to the parent directory.

• A Path: If the path is an absolute path, it is returned as is. Otherwise, the path is interpreted
relative to the parent directory.

• A URI or URL: The URL’s path is interpreted as the file path. Currently, only file: URLs
are supported.

• A IHasURI: The returned URI is interpreted as defined above.

• A Closure: The closure’s return value is resolved recursively.

• A Callable: The callable’s return value is resolved recursively.

• A Supplier: The supplier’s return value is resolved recursively.

• A Provider: The provider’s return value is resolved recursively.

The return type is java.nio.file.Path.

scriptTask (" TaskName "){
code{

// Method resolvePath (Path , Object) resolves a path relative to the
supplied folder

Path parentFolder = Paths.get('.')
Path p = paths. resolvePath (parentFolder , " MyFile .txt")

/* The resolvePath (Path , Object) method will resolve
* relative and absolute paths to a java.nio.file.Path object .
*/

}
}

Listing 5.14: Resolves a path with the resolvePath() method

5.4.3.2 Path Resolution

The resolvePath(Object) method resolves the Object to a file path. Relative paths are preserved,
so relative paths are not converted into absolute paths.

This method converts the supplied path same as the resolvePath(Path, Object) method. The
return type is java.nio.file.Path. See 5.4.3.1. But it does NOT convert relative paths into
absolute.

© 2025, Vector Informatik GmbH 40 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName "){
code{

// Method resolvePath () resolves a path and preserve relative paths
Path p = paths. resolvePath (" MyFile .txt")

/* The resolvePath () method will resolve
* relative and absolute paths to a java.nio.file.Path object .
* Is also preserves relative paths.
*/

}
}

Listing 5.15: Resolves a path with the resolvePath() method

5.4.3.3 Script Folder Path Resolution

The resolveScriptPath(Object) method resolves a file path relative to the script directory of
the executed IScript.

This method converts the supplied path same as the resolvePath(Path, Object) method. The
return type is java.nio.file.Path. See 5.4.3.1 on the previous page.

scriptTask (" TaskName "){
code{

// Method resolveScriptPath () resolves a path relative to the script folder
Path p = paths. resolveScriptPath (" MyFile .txt")

/* The resolveScriptPath () method will resolve
* relative and absolute paths to a java.nio.file.Path object .
*/

}
}

Listing 5.16: Resolves a path with the resolveScriptPath() method

5.4.3.4 Project Folder Path Resolution

The resolveProjectPath(Object) method resolves a file path relative to the project directory
(see getProjectFolder()) of the current active project.

This method converts the supplied path same as the resolvePath(Path, Object) method. The
return type is java.nio.file.Path. See 5.4.3.1 on the preceding page.

There must be an active project to use this method. See chapter 5.5.2 on page 61 for details about
active projects.

© 2025, Vector Informatik GmbH 41 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName "){
code{

// Method resolveProjectPath () resolves a path relative active project
folder

Path p = paths. resolveProjectPath (" MyFile .txt")

/* The resolveProjectPath () method will resolve
* relative and absolute paths to a java.nio.file.Path object .
*/

}
}

Listing 5.17: Resolves a path with the resolveProjectPath() method

5.4.3.5 BSW Package Folder Path Resolution

The resolveBswPackagePath(Object) method resolves a file path relative to the BSW Package
directory (see getBswPackageRootFolder()).

This method converts the supplied path same as the resolvePath(Path, Object) method. The
return type is java.nio.file.Path. See 5.4.3.1 on page 40.

scriptTask (" TaskName "){
code{

// Method resolveBswPackagePath () resolves a path relative BSW Package
folder

Path p = paths. resolveBswPackagePath (" MyFile .txt")

/* The resolveBswPackagePath () method will resolve
* relative and absolute paths to a java.nio.file.Path object .
*/

}
}

Listing 5.18: Resolves a path with the resolveBswPackagePath() method

5.4.3.6 Temp Folder Path Resolution

The resolveTempPath(Object) method resolves a file path relative to the script temp directory of
the executed IScript. A new temporary folder is created for each IScriptTask execution.

This method converts the supplied path same as the resolvePath(Path, Object) method. The
return type is java.nio.file.Path. See 5.4.3.1 on page 40.

scriptTask (" TaskName "){
code{

// Method resolveTempPath () resolves a path relative to the temp folder
Path p = paths. resolveTempPath (" MyFile .txt")

/* The resolveTempPath () method will resolve
* relative and absolute paths to a java.nio.file.Path object .
*/

}
}

Listing 5.19: Resolves a path with the resolveTempPath() method

© 2025, Vector Informatik GmbH 42 of 387

Chapter 5. AutomationInterface API Reference

5.4.3.7 Other Project and Application Paths

The IAutomationPathsApi will also resolve any other Vector provided path variable
like $(EcucFile). The call would be paths.ecucFile, add the variable to resolve as a Groovy
property. Short list of available variables (not complete, please see DaVinci Configurator help for
more details):

• EcucFile

• OutputFolder

• SystemFolder

• AutosarFolder

• more ...
scriptTask (" TaskName ", DV_PROJECT){

code{
// The property OutputFolder is the folder of the generated artifacts
Path folder = paths. outputFolder

}
}

Listing 5.20: Get the project output folder path

scriptTask (" TaskName "){
code{

// The property bswPackageRootFolder is the folder of the used BSW
Path folder = paths. bswPackageRootFolder

}
}

Listing 5.21: Get the BSW Package folder path

5.4.4 Script logging API
The script task execution (IScriptExecutionContext) provides a script logger to log events during
an execution. The method getScriptLogger() returns the logger. The logger can be used to
log:

• Errors

• Warnings

• Debug messages

• More...

You shall always prefer the usage of the logger before using the println() of stdout or
stderr.

In any code block without direct access to the script API, you can write the following code to
access the logger: ScriptApi.scriptLogger

© 2025, Vector Informatik GmbH 43 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName "){
code{

// Use the scriptLogger to log messages
scriptLogger .info "My script is running "
scriptLogger .warn "My Warning "
scriptLogger .error "My Error"
scriptLogger .debug "My debug message "
scriptLogger .trace "My trace message "

// Also log an Exception as second argument
scriptLogger .error("My Error", new RuntimeException (" MyException "))

}
}

Listing 5.22: Usage of the script logger

The ILogger also provides a formatting syntax for the format String. The syntax is {IndexNumber}
and the index of arguments after the format String.

It is also possible to use the Groovy GString syntax for formatting.

scriptTask (" TaskName "){
code{ argument ->

// Use the format methods to insert data
scriptLogger .info("My script {0} with :{1}", scriptTask , argument)

}
}

Listing 5.23: Usage of the script logger with message formatting

scriptTask (" TaskName "){
code{ argument ->

// Use the Groovy GString syntax to insert data
scriptLogger .info "My script $scriptTask with: $argument "

}
}

Listing 5.24: Usage of the script logger with Groovy GString message formatting

5.4.5 Versions API
The Versions API provides methods to identify the current used versions e.g. Configurator Version,
Automation Interface Version, ...

© 2025, Vector Informatik GmbH 44 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ', DV_APPLICATION){
code {

versions {
String cfgVersion = daVinciConfiguratorVersion
println cfgVersion

String aiVersion = daVinciAutomationInterfaceVersion
println aiVersion

String bswId = bswDeliveryId

String bswPackageNumber = bswPackageNumber

}
}

}

Listing 5.25: Get Configurator and AI Version

daVinciAutomationInterfaceVersion Returns the AutomationInterface version in the format [ma-
jor].[minor].[bugfix].

daVinciConfiguratorVersion Returns the DaVinciConfigurator version in the format [major].[minor].[bugfix].

bswDeliveryId Returns the BSW delivery ID, like CBD00000.

bswPackageNumber Returns the BSW package number, like 33.06.06.

5.4.6 User Interactions
The UserInteraction API provides methods to directly communicate with the user via Message-
Boxes, or report progress of long running operations.

You should use the API only if you want do communicate directly with the user. So you should
not use the API for batch jobs.

5.4.6.1 UserInteraction

The UserInteraction API provides methods to display messages to the user directly. In UI mode the
DaVinci Configurator will prompt a message box and will block until the user has acknowledged
the message. In console (non UI) mode, the message is logged to the console in a user logger.

The user logger will display error, warnings and infos by default. The logger name will not be
displayed.

The user interaction is good to display information where the user has to respond to immediately.
Please use the feature sparingly, because users do not like to acknowledge multiple messages for a
single script task execution.

The code block userInteractions{} provides the API inside the block. The following methods
can be used:

• errorToUser()

© 2025, Vector Informatik GmbH 45 of 387

Chapter 5. AutomationInterface API Reference

• warnToUser()

• infoToUser()

• messageToUser(ELogLevel, Object)

The severity (error, warning, info) will change the display (icons, text) of the message box. No
other semantic is applied by the severity.

scriptTask (" TaskName ", DV_APPLICATION){
code{

userInteractions {
warnToUser (" Warning displayed to the user as message box")

}

// You could also write
userInteractions . errorToUser ("Error message for the user")

}
}

Listing 5.26: UserInteraction from a script

5.4.6.2 Progress Indication

If you perform long running operations in a script task, you should display some progress to the
user, otherwise the user may cancel the whole execution. The progress API will display the progress
of the currently running script task by the information provided by the script code.

The method progress(String, Callable) displays the passed message in progress information
dialog and executed the code block. So the message is displayed until the code block has fin-
ished.
userInteractions . progress ("The text for the user"){

// Here the code of the long running operation
}

Listing 5.27: Display progress to the user

You could also nest multiple progress() calls. When a progress block is left, the parent progress
text will be displayed again.

userInteractions {
progress ("The text for the user"){

// Here the code of the long running operation
progress ("Inner operation "){

// Here code of inner operation
}

}
progress (" Second operation "){

// Code of the second operation
}

}

Listing 5.28: Display progress to the user nested

The method progress(String, int, Callable) updates the progress information for the user
with the message, during the code is running with work ticks.

© 2025, Vector Informatik GmbH 46 of 387

Chapter 5. AutomationInterface API Reference

It also indicates progress in the progress bar, but you have to set the total amount of work. The
total work will be taken from the parent and sets the remaining work for the code block.

The root script task always starts with totalWork of 1000 ticks, so you have to consume 1000 ticks
to fill the progress bar.

userInteractions {
progress ("The text for the user", 1000){

worked (100)
progress ("Inner operation ", 400){

// 100 ticks
worked (200)
// 300 ticks

}
// half reached - 500 ticks
progress ("Inner operation ", 200){

worked (100)
// 600 ticks reached

}
// 700 ticks reached

}
// All 1000 ticks done , the progress bar is now full!

}

Listing 5.29: Display progress to the user with progress bar work

Eclipse API You can also use the underlying Eclipse API to fine grain control the progress bar
and information data. To do this use the getProgressMonitor() method to retrieve the Eclipse
SubMonitor. See also the Eclipse API SubMonitor.setWorkRemaining(int) to scale your own
work to different values (also more than 1000 ticks).

© 2025, Vector Informatik GmbH 47 of 387

Chapter 5. AutomationInterface API Reference

5.4.7 Script Error Handling
5.4.7.1 Script Exceptions

All exceptions thrown by any script task execution are sub types of ScriptingException.

Figure 5.5: ScriptingException and sub types

5.4.7.2 Script Task Abortion by Exception

The script task can throw an ScriptClientExecutionException to abort the execution of an
IScriptTask, and display a meaningful message to the user.

scriptTask (" TaskName "){

code{
// Stop the execution and display a message to the user
throw new ScriptClientExecutionException (" Message to the User")

}
}

Listing 5.30: Stop script task execution by throwing an ScriptClientExecutionException

Exception with Console Return Code An ScriptClientExecutionException with an return
code of type Integer will also abort the execution of the IScriptTask.

But it also changes the return code of the console application, if the IScriptTask was executed in
the console application. This could be used when the console application of the DaVinci Configu-
rator is called for other scripts or batch files.

© 2025, Vector Informatik GmbH 48 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName "){

code{
// The return code will be returned by the DvCmd.exe process
def returnCode = 50
throw new ScriptClientExecutionException (returnCode , " Message to the User"

)
}

}

Listing 5.31: Changing the return code of the console application by throwing an
ScriptClientExecutionException

Reserved Return Codes The returns codes 0-20 are reversed for internal use of the DaVinci
Configurator, and are not allowed to be used by a client script. Also negative returns codes are
not permitted.

5.4.7.3 Unhandled Exceptions from Tasks

When a script task execution throws any type of Exception (more precise Throwable) the script
task is marked as failed and the Exception is reported to the user.

© 2025, Vector Informatik GmbH 49 of 387

Chapter 5. AutomationInterface API Reference

5.4.8 User Defined Classes and Methods
You can define your own methods and classes in a script file. The methods a called like any other
method.
scriptTask ("Task"){

code{
userMethod ()

}
}

def userMethod (){
return " UserString "

}

Listing 5.32: Using your own defined method

Classes can be used like any other class. It is also possible to define multiple classes in the script
file.
scriptTask ("Task"){

code{
new UserClass (). userMethod ()

}
}

class UserClass {
def userMethod (){

return " ReturnValue "
}

}

Listing 5.33: Using your own defined class

You can also create classes in different files, but then you have to write imports in your script like
in normal Groovy or Java code.

The script should be structured as any other development project, so if the script file gets too big,
please refactor the parts into multiple classes and so on.

daVinci Block The classes and methods must be outside of the daVinci{ } block.
import static com. vector .cfg. automation .api. ScriptApi .*
daVinci {

scriptTask ("Task"){
code {}

}
}

def userMethod (){}

class UserClass {}

Listing 5.34: Using your own defined method with a daVinci block

Code Completion Note that the code completion for the Automation API will not work auto-
matically in own defined classes and methods. You have to open for example a scriptCode{}

© 2025, Vector Informatik GmbH 50 of 387

Chapter 5. AutomationInterface API Reference

block. The chapter5.4.9 describes how to use the Automation API for your own defined classes
and methods.

5.4.9 Usage of Automation API in own defined Classes and Methods
In your own methods and classes the automation API is not automatically available differently as
inside of the script task code{} block. But it is often the case, that methods need access to the
automation API.

The class ScriptApi provides static methods as entry points into the automation API. The
static methods either return the API objects, or you could pass a Closure, which will activate the
API inside of the Closure.

5.4.9.1 Access the Automation API like the Script code{} Block

The ScriptApi.scriptCode(Transformer) method provides access to all automation APIs the
same way as inside of the normal script code{} block.

This is useful, if you want to call script code API inside of your own methods and classes.

def yourMethod (){
// Needs access to an automation API
ScriptApi . scriptCode {

// API is now available
generation . generate ()

}
}

Listing 5.35: ScriptApi.scriptCode{} usage in own method

The ScriptApi.scriptCode() method can be used to call API in Java style.

def yourMethod (){
// Needs access to an automation API
ScriptApi . scriptCode (). generation . generate ()

}

Listing 5.36: ScriptApi.scriptCode() usage in own method

Java note: The ScriptApi.scriptCode() returns the IScriptExecutionContext.

5.4.9.2 Access the Project API of the current active Project

The ScriptApi.activeProject() method provides access to the project automation API of the
currently active project. This is useful, if you want to call project API inside of your own methods
and classes.
def yourMethod (){

// Needs access to an automation API
ScriptApi . activeProject {

// Project API is now available
transaction {

// Now model modifications are allowed
}

}
}

Listing 5.37: ScriptApi.activeProject{} usage in own method

© 2025, Vector Informatik GmbH 51 of 387

Chapter 5. AutomationInterface API Reference

The ScriptApi.activeProject() method returns the current active IProject.

def yourMethod (){
// Needs access to an automation API
IProject theActiveProject = ScriptApi . activeProject ()

}

Listing 5.38: ScriptApi.activeProject() usage in own method

5.4.10 User Defined Script Task Arguments
A script task can create IScriptTaskUserDefinedArgument, which can be set by the user (e.g.
from the commandline) to pass user defined arguments to the script task execution. An argument
can be optional or required. The arguments are type safe and checked before the task is executed.
An argument can be specified with a value and also without one.
Example: "–count 25" or "-s"

Possible valueTypes are:

• String

• Boolean

• Void: For parameter where only the existence is relevant.

• File: The existence of the file is not checked by default. See argument validators.

• Path: Same as File

• Integer

• Long

• Double

The help text is automatically expanded with the help for user defined script task arguments.

scriptTask (" TaskName "){
def procArg = newUserDefinedArgument ("p", Void , " Enables the processing of ...")
code{

if(procArg . hasValue){
scriptLogger .info "The argument -p was defined "

}
}

}

Listing 5.39: Script task UserDefined argument with no value

© 2025, Vector Informatik GmbH 52 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName "){
def countArg = newUserDefinedArgument ("count", Integer ,

"The amount of elements to create ")

def nameArg = newUserDefinedArgument ("name", String ,
"The element name to create ")

code{
// NOTE: The value can only be retrieved within the code closure
int count = countArg .value
String name = nameArg .value

scriptLogger .info "The arguments --name and --count were $name , $count "
}

}

Listing 5.40: Define and use script task user defined arguments from CLI

scriptTask (" TaskName "){
// User Defined Argument with the default value 25.0
def procArg = newUserDefinedArgument ("p", Double , 25.0 , "Help text ...")
code{

double value = procArg .value
scriptLogger .info "The argument -p was $value "

}
}

Listing 5.41: Script task UserDefined argument with default value

scriptTask (" TaskName "){
def multiArg = newUserDefinedArgument (" multiArg ", String , "Help text ...")

code{

List <String > values = multiArg . values // Call values instead of value
scriptLogger .info "The argument --multiArg had values : $values "

}
}

Listing 5.42: Script task UserDefined argument with multiple values

5.4.10.1 User defined Argument Validators

You could also specify a validator for the argument to check for special conditions, like the file
must exist. This is helpful to provide a quick feedback to the user, if the task would be executable.
Simply add the validator at the end of the newUserDefinedArgument() call. The validator code
is called when the input is checked. There are also default validators available, like:

• Constraints.IS_EXISTING_FOLDER

• Constraints.IS_EXISTING_FILE

• Constraints.IS_VALID_AUTOSAR_SHORT_NAME

Please see chapter 5.4.10.2 on the next page for more available validators.

© 2025, Vector Informatik GmbH 53 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.util. contract .util. Constraints

scriptTask (" TaskName "){
def contArg = newUserDefinedArgument ("p", String ,

"Help text ...",
Constraints .

IS_VALID_AUTOSAR_SHORT_NAME_PATH)
code{

String value = contArg .value
scriptLogger .info "The argument -p was $value "

}
}

Listing 5.43: Script task UserDefined argument with predefined validator

Or you implement your own validation logic, by passing a Closure, which throws an exception, if
the value is invalid.
scriptTask (" TaskName "){

// User Defined Argument with the validator code as parameter
newUserDefinedArgument ("p", Integer , 20, "Help text ...",

{ value ->
if(value % 2){

throw new IllegalArgumentException ("The value has to be
even.")

}
})

code{
}

}

Listing 5.44: Script task UserDefined argument with own validator

5.4.10.2 Constraints

Constraints provides general purpose constraints for checking given parameter values through-
out the automation interface. These constraints are referenced from the AutomationInterface
documentation wherever they apply. The AutomationInterface takes a fail fast approach verify-
ing provided parameter values as early as possible and throwing appropriate exceptions if values
violate the corresponding constraints.

The following constraints are provided:

IS_NOT_NULL Ensures that the given Object is not null.

IS_NON_EMPTY_STRING Ensures that the given String is not empty.

IS_VALID_FILE_NAME Ensures that the given String can be used as a file name.

IS_VALID_PROJECT_NAME Ensures that the given String can be used as a name for a
project. A valid project name starts with a letter [a-zA-Z] contains otherwise only characters
matching [a-zA-Z0-9_] and is at most 128 characters long.

© 2025, Vector Informatik GmbH 54 of 387

Chapter 5. AutomationInterface API Reference

IS_NON_EMPTY_ITERABLE Ensures that the given Iterable is not empty.

IS_VALID_AUTOSAR_SHORT_NAME Ensures that the given String conforms to the syn-
tactical requirements for AUTOSAR short names.

IS_VALID_AUTOSAR_SHORT_NAME_PATH Ensures that the given String conforms to
the syntactical requirements for AUTOSAR short name paths.

IS_ABSOLUTE Ensures that Ensures that given Path is absolute.

IS_WRITABLE Ensures that the file or folder represented by the given Path exists and can be
written to.

IS_READABLE Ensures that the file or folder represented by the given Path exists and can be
read.

IS_EXISTING_FOLDER Ensures that the given Path points to an existing folder.

IS_EXISTING_FILE Ensures that the given Path points to an existing file.

IS_CREATABLE_FOLDER Ensures that the given Path either points to an existing folder which
can be written to or points to a location at which a corresponding folder could be created.

IS_DCF_FILE Ensures that the given Path points to a DaVinci Developer workspace file (.dcf
file).

IS_DVJSON_FILE Ensures that the given Path points to a DaVinci project file (.dvjson file).

IS_ARXML_FILE Ensures that the given Path points to an .arxml file.

© 2025, Vector Informatik GmbH 55 of 387

Chapter 5. AutomationInterface API Reference

5.4.10.3 Run Script Task with User Defined Task Arguments from CLI

The help of the run command shows, how to execute a script task with user defined argu-
ments.
Usage: dvcfg -b automation run [-h] -b=<folder > [-p=<file >]

-t=<task >[,<task >...] [-t=<task >[,<task >...]]...
[-a=<arg >]... [-l=<location >[,< location >...]]...
[--no -save]

Description :
Run automation tasks with arguments .

Listing 5.45: Help for run script task

* -t, --task=<task >[,<task >...] List of script tasks to execute .
E.g.: -t task1 ,task2

-a, --arg=<arg > Define a set of arguments specific to a single
task.

E.g.: -a 'task1 ' -a '--name=str1 --value =1 ' -a
'task2 ' -a '-i 1,2,3'

Listing 5.46: Help for user defined task arguments

Let’s have a look at an example script task with user defined arguments as shown below.

import static com. vector .cfg. automation .api. ScriptApi .*

scriptTask (" userArgTask ", DV_APPLICATION) {

def arg_enable = newUserDefinedArgument (" enable ", Void , "Help text ...")
def arg_count = newUserDefinedArgument ("count", Integer , "Help text ...")
def arg_name = newUserDefinedArgument ("name ", String , "Help text ...")
def arg_double = newUserDefinedArgument (" double ", Double , 25.0 , "Help text ...")
def arg_multiArg = newUserDefinedArgument (" multiArg ", String , "Help text ...")

code {
if (arg_enable . hasValue) {

scriptLogger .info "The argument --enable was defined ."
}
if (arg_count . hasValue) {

scriptLogger .info "The argument --count has the value ${ arg_count .value }."
}
if (arg_name . hasValue) {

scriptLogger .info "The argument --name has the value ${ arg_name .value }."
}
if (arg_double . hasValue) {

scriptLogger .info "The argument --double has the value ${ arg_double .value
}."

}
if (arg_multiArg . hasValue) {

List <String > values = arg_multiArg . values
scriptLogger .info "The argument --multiArg has values : ${ values }."

}
}

}

Listing 5.47: Example script task with user defined arguments

To run this script task from CLI, you can use the following command.

© 2025, Vector Informatik GmbH 56 of 387

Chapter 5. AutomationInterface API Reference

automation run ...
-t " userArgTask "
-a " userArgTask "
-a "--enable --count =25 --name=John --double =25.0 --multiArg =1,2,3,4,5"

Listing 5.48: Example CLI call with user defined task arguments

© 2025, Vector Informatik GmbH 57 of 387

Chapter 5. AutomationInterface API Reference

5.4.11 Stateful Script Tasks
Script tasks normally have no state or cached data, but it can be useful to cache data during an
execution, or over multiple task executions. The IScriptExecutionContext provides two methods
to save and restore data for that purpose:

• getExecutionData() - caches data during one task execution

• getSessionData() - caches data over multiple task executions

Execution Data Caches data during a single script task execution, which allows to save calculated
values or services needed in multiple parts of the task, without recalculating or creating it. Note:
When the task is executed again the executionData will be empty.

scriptTask (" TaskName "){
code{

// Cache a value for the execution
executionData . myCacheValue = 500

def val = executionData . myCacheValue // Retrieve the value anywhere
scriptLogger .info "The cached value is $val"

// Or access it from any place with ScriptApi . scriptCode like:
def sameValue = ScriptApi . scriptCode . executionData . myCacheValue

}
}

Listing 5.49: executionData - Cache and retrieve data during one script task execution

Session Data Caches data over multiple task executions, which allows to implement a stateful
task, by saving and retrieving any data calculated by the task itself.

Caution: The data is saved globally so the usage of the sessionData can lead to memory leaks
or OutOfMemoryErrors. You have to take care not to store too much memory in the sessionData.
The DaVinci Configurator will also free the sessionData, when the system run low on free memory.
So you have to deal with the fact, that the sessionData was freed, when the script task getting
executed again. But the data is not deallocated during a running execution.

scriptTask (" TaskName "){
// Setup - set the value the first time , this is only executed once (during

initialization)
sessionData . myExecutionCount = 1

code{
// Retrieve the value
def executionCount = sessionData . myExecutionCount

scriptLogger .info "The task was executed $executionCount times"

// Update the value
sessionData . myExecutionCount = executionCount + 1

}
}

Listing 5.50: sessionData - Cache and retrieve data over multiple script task executions

© 2025, Vector Informatik GmbH 58 of 387

Chapter 5. AutomationInterface API Reference

API usage Both methods executionData and sessionData return the same API of type IS-
criptTaskUserData.

The IScriptTaskUserData provides methods to retrieve and store properties by a key (like a
Map). The retrieval and store methods are Object based, so any Object can be a key. The
exception are Class instances (like String.class, which required that the value is an instance of
the Class).

On retrieval if a property does not exist an UnknownPropertyException is thrown. Properties can
be set multiple times and will override the old value. The keys of the properties used to retrieve
and store data are compared with Object.equals(Object) for equality.

The listing below describes the usage of the API:

scriptTask (" TaskName "){
code{

def val
// The sessionData and executionData have the same API

// You have multiple ways to set a value
executionData . myCacheId = "VALUE"
executionData .set(" myCacheId ", "VALUE")
executionData [" myCacheId "] = "VALUE"
// Or with classes for a service locator pattern
executionData .set(Integer .class , 50) // Possible for any Class
executionData [Integer] = 50

// There are the same ways to retrieve the values
val = executionData . myCacheId
val = executionData .get(" myCacheId ")
val = executionData [" myCacheId "]
// Or with classes for a service locator pattern
val = executionData .get(Integer .class)
val = executionData [Integer]

// You can also ask if the property exists
boolean exists = executionData .has(" myCacheId ")

}
}

Listing 5.51: sessionData and executionData syntax samples

© 2025, Vector Informatik GmbH 59 of 387

Chapter 5. AutomationInterface API Reference

5.4.12 ScriptAccess - Calling ScriptTasks
Sometimes it can be helpful to call other script tasks from inside your task. The scripts{} block
or getScripts() method provides API to retrieve existing IScripts and call other IScriptTasks
from your running IScriptTask.

Note: If you just want to reuse code of your own scripts in an automation script project,
create a normal method containing the code and call it, instead of calling the task. The method
is typesafe, has code completion support and is much faster than calling a script task.

Calling script tasks To call a task you need the name of the task and the IScriptTaskType. The
IScriptTaskType determines the argument types and the return type of the script task. Then
you can use scripts.callScriptTask(String, Object...) to call the script.

You could also use callScriptTaskWithUserArgs(String, String, Object...), if you want to
pass user defined arguments.

scriptTask (" TaskName "){
code{

scripts . callScriptTask (" OtherTask ")
// The same
scripts {

callScriptTask (" OtherTask ")
}

}
}

scriptTask (" OtherTask "){
code{

// Other task code
}

}

Listing 5.52: Call another script task from a script task

Calling script tasks with task arguments If the IScriptTaskType requires task arguments, you
have to pass the arguments to the callScriptTask() methods. The return value of the method
is the returned value of the called script task.

scriptTask (" TaskName ", DV_PROJECT){
code{

def arg1 = "First argument "
def arg2 = 5
def result = scripts . callScriptTask (" OtherTask ", arg1 , arg2)
// Result contains the calculated value of OtherTask

}
}

scriptTask (" OtherTask "){
code{arg1 , arg2 ->

return arg1 + arg2
}

}

Listing 5.53: Call another script task with arguments

© 2025, Vector Informatik GmbH 60 of 387

Chapter 5. AutomationInterface API Reference

5.5 Project Handling
Project handling comprises creating new projects, opening existing projects or accessing the cur-
rently active project.

IProjectHandlingApi provides methods to access to the active project, for creating new projects
and for opening existing projects.

getProjects() allows accessing the IProjectHandlingApi like a property.

scriptTask ('taskName ') {
code {

// IProjectHandlingApi is available as " projects " property
def projectHandlingApi = projects

}
}

Listing 5.54: Accessing IProjectHandlingApi as a property

projects(Transformer) allows accessing the IProjectHandlingApi in a scope-like way.

scriptTask ('taskName ') {
code {

projects {
// IProjectHandlingApi is available inside this Closure

}
}

}

Listing 5.55: Accessing IProjectHandlingApi in a scope-like way

5.5.1 Projects
Projects in the AutomationInterface are represented by IProject instances. These instances can
be created by:

• Creating a new project

• Loading an existing project

You can only access IProject instances by using a code block at IProjectHandlingApi or IPro-
jectRef class. This shall prevent memory leaks, by not closing open projects.

5.5.2 Accessing the active Project
The IProjectHandlingApi provides access to the active project. The active project is either (in
descending order):

• The last IProject instance activated with a code block

– Stack-based - so multiple opened projects are possible and the last (inner) code block
is used.

• The passed project to a project task

• Or the loaded project in the current DaVinci Configurator in an application task

The figure 5.6 on the following page describes the behavior to search for the active project of a
script task.

© 2025, Vector Informatik GmbH 61 of 387

Chapter 5. AutomationInterface API Reference

Figure 5.6: Search for active project in getActiveProject()

It is possible that there is no active project, e.g. no project was loaded.

You can switch the active project, by calling the IProject.with(Transformer) method on an
IProject instance.

// Retrieve theProject from other API like load a project
IProject theProject = ...;
theProject .with {

// Now theProject is the new active project inside of this lambda
}

Listing 5.56: Switch the active project

To access the active project you can use the activeProject(Transformer) and getActivePro-
ject() methods.

© 2025, Vector Informatik GmbH 62 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ') {
code {

if (projects . projectActive) {
// active IProject is available as " activeProject " property
scriptLogger .info " Active project : ${ projects . activeProject . projectName }"
projects . activeProject {

// active IProject is available inside this Closure
scriptLogger .info " Active project : ${ projectName }"

}
} else {

scriptLogger .info 'No project active '
}

}
}

Listing 5.57: Accessing the active IProject

isProjectActive() returns true if and only if there is an active IProject. If isProjectActive()
returns true it is safe to call getActiveProject().

getActiveProject() allows accessing the active IProject like a property.

activeProject(Transformer) allows accessing the active IProject in a scope-like way. This will
enable the project specific API inside of the code parameter.

5.5.3 Accessing the project search
The SearchApiEntryPoint provides the possibility to search parameters, containers or module
configurations by several criteria. The API also provides the ability to execute several checks on
the results.
scriptTask (" TestSearchApi ", DV_PROJECT) {
code {

activeProject {
// Use the search API with a certain datamining query from the GUI

FindView
def findings = search (" Definition == EcucGeneral ")

// It is possible to use the search API multiply times
def number = search (" Definition == EcucGeneral ").size ()

// Use the closure to operate on the search results
search (" Definition == EcucGeneral "){

// To prove that the result
def containsObjCondition = { sr -> sr. result (). contains ("/

ActiveEcuC /EcuC/ EcucGeneral [0: DummyFunction]") };
def result = isConditionMet (containsObjCondition)
// Report or print result

// Check if result size is equal to 22
isSize (ESearchOperator .EQ , 22)

}
}

}
}

Listing 5.58: Using the search API

search(String) is used to evaluate a DataMiningService query. If the query isn’t correct, a
SearchApiException will be thrown.

© 2025, Vector Informatik GmbH 63 of 387

Chapter 5. AutomationInterface API Reference

Example:

Figure 5.7: SearchApi Exception Message

The ISearchResultApi provides the possibility to make evaluations based on the search re-
sults.

Use isConditionMet(Predicate) to pass a condition to the search result. With this condition a
certain expectation can be proven.

Use isSize(ESearchOperator, int) to pass a condition to compare it with the size of the search
result. It can be used to check a certain expectation. The passed operation (ESearchOperator)
defines the condition.

Use size() to get the result size of the search.

Use result() to get a list of the result elements. The list contains ObjectLinks as Strings.
Returns an empty list if no elements are found.

5.5.4 Expression Evaluation API
The IExpressionEvaluationApi provides the possibility to evaluate the complex logical expres-
sions composed of single queries.

The evaluateExpression(String) is used to evaluate IDataMiningService queries linked with
logical operators.

5.5.5 Accessing Project Settings
The entrypoint enables querying or modifying the project settings. Every modification of the
project settings must be done in a transaction. The following section describes how the project
settings of a project can be accessed and modified.

Use getProjectSettings() or projectSettings(Transformer) to specify the project settings
for a project.

5.5.5.1 Project Folder Api

IProjectFolderApi contains the methods to specify the current project’s folder settings.

Use getFolder() or folder(Transformer) to specify the folder settings.

IProjectFolderApi contains the methods to specify the current project’s folder settings.

© 2025, Vector Informatik GmbH 64 of 387

Chapter 5. AutomationInterface API Reference

Module Files Folder Get the module files folder for the current project with getModuleFiles-
Folder().

Module Files Folder Gets the GenDataVtt folder for the current project with getGenDataVtt().

Templates Folder Get the templates folder for the current project with getTemplatesFolder().

Service Components Folder Get the service component files folder for the current project with
getServiceComponentFilesFolder().

Application Components Folder Get the application component files folder for the current
project with getApplicationComponentFilesFolder().

Log Files Folder Get the log files folder for the current project with getLogFilesFolder().

Measurement And Calibration Files Folder Get the measurement and calibration files folder for
the current project with getMeasurementAndCalibrationFilesFolder().

AUTOSAR Files Folder Get the AUTOSAR files folder for the current project with getAu-
tosarFilesFolder().

Bsw package Folder Get the bsw package path of the current dvjson project file with getBsw-
PackageFolder().

Timing Extension Folders Get the TimingExtension folders for the current project with get-
TimingExtensionFolders().

Structured Extract Folders Get the structured Extract folder for the current project with get-
StructuredExtractFolder().

Definition Restriction folder Get the Definition Restriction files folder for the current project
with getDefinitionRestrictionFolder().

Bsw Internal Behavior folder Get the Bsw Internal Behavior files folder for the current project
with getBswInternalBehaviour().

© 2025, Vector Informatik GmbH 65 of 387

Chapter 5. AutomationInterface API Reference

5.5.5.2 Target Project Settings

IProjectTargetApi is the entry point for accessing and modifying the target settings.

Use getTarget() or target(Transformer) to specify the target project settings

Use the following methods to access the project settings. The example shows how to use the
API.
scriptTask (" TestsProjectSettings ", DV_PROJECT) {

code {
activeProject {

projectSettings {
transaction {

target {

// Get the available derivatives as collection
def newDerivative = getAvailableDerivatives (). getFirst ()
// Set the derivative setting with the new value
derivative (newDerivative)
// Returns an Optional containing the new value
getDerivative ()

def newCompiler = getAvailableCompilers (). getFirst ()
compiler (newCompiler)
getCompiler ()

def newPinLayout = getAvailablePinLayouts (). getFirst ()
pinLayout (newPinLayout)
getPinLayout ()

}
}

}
}

} // code
} // scriptTask

Listing 5.59: Access and modify Project Settings - Variant 1

Module The module which supported Derivatives shall be retrieved.

Available Derivatives getAvailableDerivatives(String) returns all possible input values for
setDerivative(String, DerivativeInfo). Note: This function will return value of getAvail-
ableDerivatives() if module is not hardware-specific.

Module The module which the derivative shall be set for.

Derivative Set the derivative for given module with setDerivative(String, DerivativeInfo).
The value given here must be one of the values returned by getAvailableDerivatives(String).

Module The module which derivative setting shall be retrieved.

© 2025, Vector Informatik GmbH 66 of 387

Chapter 5. AutomationInterface API Reference

Get Derivative getDerivative(String) returns the value of the derivative configured for given
module. Note: This function will return value of getDerivative() (potentially null) if no module-
specific derivative has been configured.

Available Compilers getAvailableCompilers() returns all possible input values for setCom-
piler(ImplementationProperty). Note: the available compilers depend on the currently config-
ured derivative. This method will return an empty collection if no derivative has been configured
at the time it is called.

Compiler Set the compiler for the new project with setCompiler(ImplementationProperty).
The value given here must be one of the values returned by getAvailableCompilers().

Get Compiler getCompiler() returns the value of the current compiler project setting. Note: If
no compiler has been configured, it will return null.

Available PinLayouts getAvailablePinLayouts() returns all possible input values for setPin-
Layout(ImplementationProperty). Note: The available pin layouts depend on the currently
configured derivative. This method will return an empty collection if no derivative has been con-
figured at the time it is called.

PinLayout Set the pinLayout of the selected derivative for the project with
setPinLayout(ImplementationProperty). The value given here must be one of the values re-
turned by getAvailablePinLayouts().

Get PinLayout getPinLayout() returns the value of the current pinLayout project setting. Note:
If no pinLayout has been configured, it will return null.

5.5.5.3 UseCase Project Settings

The IProjectUseCaseApi enables querying or modifying the "use case" setting. Use case limits
the application of pre-configuration or recommended configuration in particular application cases.
The following section describes how an use case can be accessed and modified.

Use getUseCases() or useCases(Transformer) to specify the use case context of the project
settings.

IProjectUseCaseApi is the entry point for accessing and modifying the use cases and their val-
ues.

© 2025, Vector Informatik GmbH 67 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TestsProjectSettings ", DV_PROJECT) {
code {

projectSettings {

// Entry point to access the the useCase context
useCases {

transaction {
// Get the useCase to modify
def useCase = getUseCaseByName (" MyPreUseCase ")
// Get the available values for the useCase to set
def availableUseCaseValues = useCase . getAvailableValues ()
// Get the current useCase value and name
def name = useCase .name
def value = useCase .value

// Set the new useCase value
useCase .value availableUseCaseValues [6]

}
}

}
} // code

} // scriptTask

Listing 5.60: Access and modify Use Project Settings UseCases

Available UseCases The getAvailableUseCases() returns an immutable list of all available
IUseCase.

UseCase The getUseCaseByName(String) returns a IUseCase.

Available values The getAvailableValues() returns an immutable list of available values for
the IUseCase.

Name getName() returns the name of the current use case.

Value getValue() returns the value of the current use case.

Value The setValue(String) sets the use case value. The value to set must be one of the
returned list by getAvailableValues().

5.5.6 Accessing Advanced Project Settings
The method advancedProjectSettings(Object, Action) changes CFG6 project settings as spec-
ified by the given Closure. Inside the action the IAdvancedProjectSettingsApi is available.
Note: This api can only be used with closed projects.

© 2025, Vector Informatik GmbH 68 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('changeAdvancedSettings ', DV_APPLICATION) {
code { Path projectPath , Path newDcfFilePath ->

projects . advancedProjectSettings (projectPath){
Path dcfPath = getDaVinciDeveloperWorkspace ()

}
}

}

Listing 5.61: Setting the Advanced Settings

Get DaVinci Developer Workspace getDaVinciDeveloperWorkspace() returns the current set
DaVinci Developer workspace path, or null if the path was not set.

Set DaVinci Developer Workspace setDaVinciDeveloperWorkspace(Object) sets DaVinci
Developer workspace to the project.

Add Application Components Folder Add an application component files folder for the current
project with addApplicationComponentFilesFolder(Object).

The value given here is converted to Path using com.vector.cfg.automation.scripting.api.ScriptConverters.TO_PATH
5.15.1 on page 321. Normally a relative path (to be interpreted relative to the project folder) should
be given here.

The following constraints apply:

• Constraints.IS_CREATABLE_FOLDER 5.4.10.2 on page 55

Remove Application Components Folder Remove an application component files folder from
the existing project with removeApplicationComponentFilesFolder(Object).

5.5.6.1 Firewall Files Settings

Use getFirewallFiles() to specify the current project’s Firewall Files settings in a scope-like
way.

IFireFilesApi contains the methods for specifying the current project’s Firewall Files settings.

General File Set the path of the General FIRe file wit setGeneral(Object).

General File Get the path of the General FIRe file with getGeneral() .

Limp Home File Set the path of the Limp Home FIRe file with setLimpHome(Object).

Limp Home File Get the path of the Limp Home FIRe file with getLimpHome().

Sync Files Calls the IFireFilesSyncService.syncFiles(java.util.Set) to sync all fire files.

© 2025, Vector Informatik GmbH 69 of 387

Chapter 5. AutomationInterface API Reference

5.5.7 Creating a new CFG6 Project
The method createProject(Action) creates a new project as specified by the given Closure.
Inside the closure the ICreateProjectApi is available.

The new project is not opened and usable until IProjectRef.openProject(Transformer) is called
on the returned IProjectRef.

scriptTask ('taskName ', DV_APPLICATION) {
code {

def newProject = projects . createProject {
projectName 'NewProject '
projectFolder paths. resolveTempPath ('projectFolder ')

}

scriptLogger .info(" Project created and saved to: $newProject ")

// Now open the project
newProject . openProject {

// Inside here the project and project settings can be used
}

}
}

Listing 5.62: Creating a new CFG6 project (Minimal Setup)

The next is a more sophisticated example of creating a project with multiple settings:

scriptTask ('taskName ', DV_APPLICATION) {
code {

def newProject = projects . createProject {

projectName 'NewProject '
projectFolder paths. resolveTempPath ('projectFolder ')

author 'projectAuthor '
version '0.9 '

}
}

}

Listing 5.63: Creating a new project (with some optional parameters)

The ICreateProjectApi contains the methods to parameterize the creation of a new project.

5.5.7.1 Mandatory Settings

projectName(String) Specifies the name of the newly created CFG6 project file. The following
constraint was applied:

• Constraints.IS_VALID_FILE_NAME5.4.10.2 on page 54

projectFolder(Object) Specify the folder in which to create the new CFG6 project. The value
given here is converted to Path. The following constraints were applied:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

© 2025, Vector Informatik GmbH 70 of 387

Chapter 5. AutomationInterface API Reference

• Constraints.IS_CREATABLE_FOLDER 5.4.10.2 on page 55

5.5.7.2 Optional Project Settings

Author The author for the new project can be specified with setAuthor(String). This is an
optional parameter defaulting to the name of the currently logged-in user if the parameter is not
provided explicitly.

The following constraints apply:

• Constraints.IS_NON_EMPTY_STRING 5.4.10.2 on page 54

Version The version for the new project can be specified with setVersion(Object). This is an
optional parameter defaulting to "1.0" if the parameter is not provided explicitly. The value given
here is converted to IVersion using ScriptConverters.TO_VERSION 5.15.1 on page 321.

The following constraints apply:

• Constraints.IS_NOT_NULL 5.4.10.2 on page 54

5.5.7.3 Target Settings

Use getProjectTarget() or projectTarget(Action) to specify the new project’s target settings
for compiler, derivatives and pin layouts.

ICreateProjectTargetApi contains the API to specify the new project’s target settings.

Available Derivatives getAvailableDerivatives() returns all possible input values for set-
Derivative(DerivativeInfo).

Derivative Set the derivative for the new project with setDerivative(DerivativeInfo). The
new default project derivative refers to the first element in the collection returned by getAvail-
ableDerivatives(). Call setDerivative(DerivativeInfo) if you would like change the deriva-
tive.

Available Compilers getAvailableCompilers() returns all possible input values for setCom-
piler(ImplementationProperty). Note: the available compilers depend on the currently config-
ured derivative. This method will return the empty collection if no derivative has been configured
at the time it is called.

Compiler Set the compiler for the new project with setCompiler(ImplementationProperty).
The new default project compiler refers to the first element in the collection returned by getAvail-
ableCompilers(). Call setCompiler(ImplementationProperty) if you would like change the
compiler.

Available Pin Layouts getAvailablePinLayouts() returns all possible input values for set-
PinLayout(ImplementationProperty). Note: the available pin layouts depend on the currently
configured derivative. This method will return the empty collection if no derivative has been
configured at the time it is called.

© 2025, Vector Informatik GmbH 71 of 387

Chapter 5. AutomationInterface API Reference

Pin Layout Set the pin layout of the selected derivative for the new project with setPinLay-
out(ImplementationProperty). The new default project pinLayout refers to the first element in
the collection returned by getAvailablePinLayouts(). Call setPinLayout(ImplementationProperty)
if you would like change the pinLayout.

5.5.7.4 Project Type Settings

Note: If no projectType settings will be set, the standard type will be used.

Use type(EEnvironmentProjectType) to specify the projects type setting.

Use domain(EEnvironmentProjectTypeDomain) to specify the projects domain type setting.

import com. vector .cfg.core. project . EEnvironmentProjectTypeDomain
import com. vector .cfg.core. project . EEnvironmentProjectType

scriptTask ('taskName ', DV_APPLICATION) {

code {
def tmpFolder = paths. resolveTempPath ('projectFolder ')
def newProject = projects . createProject {

projectName 'NewProject '
projectFolder tmpFolder

// Remove those settings to use the Standard ProjectType
projectType {

type EEnvironmentProjectType . SOFTWARE_CLUSTER_CONNECTION
domain EEnvironmentProjectTypeDomain . GLOBAL_RESOURCE_DB

}
}

}
}

Listing 5.64: Set project type and domain while project creation

5.5.7.5 Post Build Settings

Use getPostBuild() or postBuild(Action) to specify the new project’s post build settings for
Post-build selectable and or loadable projects.

ICreateProjectPostBuildApi contains the API to specify the new project’s post build set-
tings.

Post-build Loadable Support setLoadable(boolean) sets whether or not to support Post-build
loadable for the new project. This is an optional parameter defaulting to false if the parameter
is not provided explicitly.

Post-Build Selectable Support setSelectable(boolean) sets whether or not to support Post-
build selectable for the new project. This is an optional parameter defaulting to false if the
parameter is not provided explicitly.

5.5.7.6 Project Folder Settings

Use getFolders() or folders(Action) to specify the new project’s folders settings.

© 2025, Vector Informatik GmbH 72 of 387

Chapter 5. AutomationInterface API Reference

ICreateProjectFolderApi contains the methods to specify the new project’s folders settings.

def newProject = projects . createProject {
projectName 'NewProject '
projectFolder projectFolderToSet
folders {

applicationComponentFilesFolder tempPath . resolve (" applComp ")
autosarFilesFolder tempPath . resolve (" autosar ")
ecucFileStructure EEcucFileStructure . SINGLE_FILE
logFilesFolder tempPath . resolve (" logFiles ")
measurementAndCalibrationFilesFolder tempPath . resolve (" mAndCal ")
moduleFilesFolder tempPath . resolve (" modules ")
serviceComponentFilesFolder tempPath . resolve (" serviceComps ")
templatesFolder tempPath . resolve (" templates ")
timingExtensionFolder tempPath . resolve (" timingExt ")
vttModuleFilesFolder tempPath . resolve ("vtt")

}
}

Listing 5.65: Creating a new CFG6 project with project folder

Module Files Folder Set the module files folder for the new project with setModuleFiles-
Folder(Object). This is an optional parameter defaulting to "../Output/Source/GenData" if the
parameter is not provided explicitly. The value given here is converted to Path using ScriptCon-
verters.TO_PATH 5.15.1 on page 321. Normally an absolute path should be given here, which will
be relativized to the correct settings file.

The following constraints apply:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

Templates Folder Set the templates folder for the new project with setTemplatesFolder(Object).
This is an optional parameter defaulting to "../Output/Source/Templates" if the parameter is not
provided explicitly.

The value given here is converted to Path using ScriptConverters.TO_PATH 5.15.1 on page 321.
Normally an absolute path should be given here, which will be relativized to the correct settings
file.

The following constraints apply:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

Service Components Folder Set the service component files folder for the new project with set-
ServiceComponentFilesFolder(Object). This is an optional parameter defaulting to "../Out-
put/Config/SoftwareComponents" if the parameter is not provided explicitly.

The value given here is converted to Path using ScriptConverters.TO_PATH 5.15.1 on page 321.
Normally an absolute path should be given here, which will be relativized to the correct settings
file.

The following constraints apply:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

© 2025, Vector Informatik GmbH 73 of 387

Chapter 5. AutomationInterface API Reference

Application Components Folder Set the application component files folder for the new project
with setApplicationComponentFilesFolder(Object). This is an optional parameter defaulting
to "../Config/AppComponents" if the parameter is not provided explicitly.

The value given here is converted to Path using ScriptConverters.TO_PATH 5.15.1 on page 321.
Normally an absolute path should be given here, which will be relativized to the correct settings
file.

The following constraints apply:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

Log Files Folder Set the log files folder for the new project with setLogFilesFolder(Object).
This is an optional parameter defaulting to "../Output/Log" if the parameter is not provided
explicitly.

The value given here is converted to Path using ScriptConverters.TO_PATH 5.15.1 on page 321.
Normally an absolute path should be given here, which will be relativized to the correct settings
file.

The following constraints apply:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

Measurement And Calibration Files Folder Set the measurement and calibration files folder
for the new project with setMeasurementAndCalibrationFilesFolder(Object). This is an op-
tional parameter defaulting to "../Output/Source/McData" if the parameter is not provided ex-
plicitly.

The folder object passed to the method is converted to Path using ScriptConverters.TO_PATH
5.15.1 on page 321. Normally an absolute path should be given here, which will be relativized to
the correct settings file.

The following constraints apply:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

AUTOSAR Files Folder Set the AUTOSAR files folder for the new project with setAutosarFiles-
Folder(Object). This is an optional parameter defaulting to "../Config/AUTOSAR" if the pa-
rameter is not provided explicitly.

The value given here is converted to Path using ScriptConverters.TO_PATH 5.15.1 on page 321.
Normally an absolute path should be given here, which will be relativized to the correct settings
file.

The following constraints apply:

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

ECUC File Structure The literals of EEcucFileStructure define the alternative ECUC file struc-
tures supported by the new project. The following alternatives are supported:

SINGLE_FILE results in a single ECUC file containing all module configurations.

ONE_FILE_PER_MODULE results in a separate ECUC file for each module configuration all located
in a common folder.

© 2025, Vector Informatik GmbH 74 of 387

Chapter 5. AutomationInterface API Reference

ONE_FILE_IN_SEPARATE_FOLDER_PER_MODULE results in a separate ECUC file for each module
configuration each located in its separate folder.

Set the ECUC file structure to use for the new project with the method setEcucFileStruc-
ture(EEcucFileStructure). This is an optional parameter defaulting to EEcucFileStructure.SINGLE_FILE
if the parameter is not provided explicitly.

5.5.7.7 External References

Use getExternalReferences() ()} or externalReferences(Action) to specify the new project’s
external references.

DEV Workspace Set the DaVinci Developer workspace for the new project with setDaVinciDe-
veloperWorkspace(Object). This is an optional parameter defaulting to
"../Config/AppConfig" if the parameter is not provided explicitly.

The value given here is converted to Path using ScriptConverters.TO_PATH 5.15.1 on page 321.
Normally an absolute path should be given here, which will be relativized to the correct settings
file.

The following constraints apply:

• Constraints.IS_DCF_FILE 5.4.10.2 on page 55

• Constraints.IS_ABSOLUTE 5.4.10.2 on page 55

5.5.7.8 Additional BSWMD modules

IProjectAdditionalBswmdApi.getAdditionalBswmd()

Returns the list of path to the additional BSWMD Module Definition folders.

IProjectAdditionalBswmdApi.addAdditionalBswmd(Object)

Adds additional BSWMD files folder. The Path is ignored if it is already present.

IProjectAdditionalBswmdApi.replaceAdditionalBswmd(Object, Object)

Replaces an additional BSWMD files folder. If the #additionalBswmdFolderOld is not present,
the #additionalBswmdFolderNew is added at the end similar to addAdditionalBswmd(Object).

IProjectAdditionalBswmdApi.removeAdditionalBswmd(Object)

Removes an additional BSWMD files folder. No change if the path to be removed is absent.

IProjectAdditionalBswmdApi.clearAdditionalBswmds()

Removes all additional BSWMD files folders.

© 2025, Vector Informatik GmbH 75 of 387

Chapter 5. AutomationInterface API Reference

5.5.8 Opening an existing Project
You can open an existing DaVinci Configurator project with the automation interface.

The method openProject(Object, Transformer) opens the project at the given project file
location, delegates the given code to the opened IProject.

The project is automatically closed after leaving the code of the openProject(Object, Trans-
former) method.

The Object given as a project file is converted to Path using ScriptConverters.TO_PATH 5.15.1
on page 321

scriptTask ('taskName ', DV_APPLICATION) {
code {

// replace getProjectFileToLoad () with the path to the . dvjson file to be
loaded

projects . openProject (getProjectFileToLoad ()) {

// the opened IProject is available inside this Closure
scriptLogger .info 'Project loaded and ready '

}
}

}

Listing 5.66: Opening a project from .dvjson file

Opens and migrates an existing DaVinci Configurator Classic dvjson project to the new BSW
Package.

The project is automatically closed after leaving the Closure code of the openAndMigratePro-
ject(Object, Transformer) method.

5.5.8.1 Parameterized Project Load

You can also configure how a Dpa project is loaded, e.g. by disabling the generators. The method
parameterizeProjectLoad(Action) returns a handle on the project specified by the given Ac-
tion. Using the IOpenConfiguratorProjectApi, the Action may further customize the project’s
opening procedure.

The project is not opened until openProject() is called on the returned IProjectRef.

© 2025, Vector Informatik GmbH 76 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ', DV_APPLICATION) {
code {

def project = projects . parameterizeProjectLoad {
// replace getProjectFileToLoad () with the path to the . dvjson file to be

loaded
projectFile getProjectFileToLoad ()
// prevent activation of generators and validation
loadGenerators false
enableValidation false

}

project . openProject {
// the opened IProject is available inside this Closure
scriptLogger .info 'Project loaded and ready '

}
}

}

Listing 5.67: Parameterizing the project open procedure

IOpenProjectApi contains the methods for parameterizing the process of opening a project.

DVJSON File The method setProjectFile(Object) sets the .dvjson file of the project to be
opened. The value given here is converted to Path using ScriptConverters.TO_PATH 5.15.1 on
page 321. The given Path must be absolute.

Generators Using setLoadGenerators(boolean) specifies whether or not to activate generators
(including their validations) for the opened project.

Validation setEnableValidation(boolean) specifies whether to activate validation for the opened
project.

5.5.8.2 Open Project Details

IProjectRef is a handle on a project not yet loaded but ready to be opened. This could be used
to open the project.

IProjectRef instances can be obtained from form the following methods:

• IProjectHandlingApi.createProject(Closure) 5.5.7 on page 70

• IProjectHandlingApi.parameterizeProjectLoad(Action) 5.5.8 on the previous page

The IProject is not really opened until IProjectRef.openProject(Transformer) is called.
Here, the project is opened and the given code block is executed on the opened project. When
IProjectRef.openProject(Transformer) returns the project has already been closed.

Advanced Open Project Use Cases The method IProjectRef.advanced() provides methods
for advanced usages of IProject instances. For example you can open a project which will not be
closed when the open stack frame is left. This can be helpful for unit tests.

• IProjectRefAdvancedUsage.openProject(): Open the project and return the IProject
as reference, but you have to manually close the project.

© 2025, Vector Informatik GmbH 77 of 387

Chapter 5. AutomationInterface API Reference

The IProjectRefAdvancedUsage API this only for special use cases, with have very narrow scope.
If you are not sure that you need it don’t use it.

5.5.9 Create Ecu Configuration Report
The ICreateEcucReportApi enables creating an ECU-Configuration report.
Note: If no report settings are set, the defaults will take place.

Use createEcucReport{} to specify the Ecu Configuration report settings and create the report
in a scope-like way. The report gets created after the scope gets closed.

ICreateEcucReportApi is the entry point for setting the Ecu Configuration report settings.

scriptTask (" TestEcucReportCreation ", DV_PROJECT) {
code { myPath ->

activeProject {
// Use closure to get access to the ecuc report settings
createEcucReport {

// Set only those options for which to change the default value
outputFilePath myPath // default : <ProjectFolder >/ Log/

EcucReport .html
addAnnotations true // default : true
overwriteExistingReportFile true // default : true
openReportAfterGeneration false // default : true

}
}

} // code
} // scriptTask

Listing 5.68: Create Ecu Configuration Report

Use createEcucReport() to create an Ecu Configuration report with default settings.

scriptTask (" TestEcucReportCreation ", DV_PROJECT) {
code {

// Use default ecuc report settings
activeProject . createEcucReport ()

}
}

Listing 5.69: Create Ecu Configuration Report with default settings

5.5.10 Saving a Project
IProject.saveProject() saves the current state including all model changes of the project to
disc.

© 2025, Vector Informatik GmbH 78 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ', DV_APPLICATION) {
code {

// replace getDpaFileToLoad () with the path to the .dpa file to be loaded
def project = projects . openProject (getDpaFileToLoad ()) {

// modify the opened project
transaction {

operations . activateModuleConfiguration (bswDefRef .EcuC)
}

// save the modified project
saveProject ()

}
}

}

Listing 5.70: Opening, modifying and saving a project

© 2025, Vector Informatik GmbH 79 of 387

Chapter 5. AutomationInterface API Reference

5.5.11 Opening AUTOSAR Files as Project
Sometimes it could be helpful to load AUTOSAR arxml files instead of a full-fledged DaVinci
Configurator project. For example to modify the content of a file for test cases with the Automa-
tionInterface, instead of using an XML editor.

You could load multiple arxml files into a temporary project, which allowed to read and write the
loaded file content with the normal model APIs.

The following elements are loaded by default, without specifying the AUTOSAR files:

• ModuleDefinitions from the BSW: To allow the usage of the BswmdModel

• AUTOSAR standard definition: Refinement resolution of definitions

Caution: Some APIs and services may not be available for this type of project, like:

• Validation: The validation is disabled by default

• Generation: The generators are not loaded by default

The method parameterizeArxmlFileLoad(Action) allows to load multiple arxml files into a
temporary project. The given Action is used to customize the project’s opening procedure by the
IOpenArxmlFilesProjectApi.

The arxml file project is not opened until openProject() is called on the returned IProjec-
tRef.
scriptTask ('taskName ', DV_APPLICATION) {

code {
def project = projects . parameterizeArxmlFileLoad {

// Add here your arxml files to load
arxmlFiles (arxmlFilesToLoad)
rawAutosarDataMode = true

}
project . openProject {

scriptLogger .info 'Project loaded and ready '
}

}
}

Listing 5.71: Opening Arxml files as project

Arxml Files Add arxml files to load with the method arxmlFiles(Collection). Multiple files
and method calls are allowed. The given values are converted to Path instances using ScriptCon-
verters.TO_PATH 5.15.1 on page 321.

Raw AUTOSAR Data Mode the method setRawAutosarDataMode(boolean) specifies whether
or not to use the raw AUTOSAR data model.

Currently only this mode is supported! You have to set rawAutosarDataMode = true.

Note: In raw mode most of the provided services and APIs will disabled, see below for de-
tails.

© 2025, Vector Informatik GmbH 80 of 387

Chapter 5. AutomationInterface API Reference

5.5.11.1 Raw AUTOSAR models as Project

Sometimes it could be helpful to create an empty AUTOSAR model or load single ARXML file.
This is called raw mode (IProjectHandlingRawApi).

You could for example create an empty AUTOSAR model add elements and then export the
snippet as an ARXML file.

In raw mode most of the provided services and APIs will disabled, like:

• Ecuc access

• BswmdModel support

• Generation

• Validation

• Workflow

• Domain API

• ChangeInspector

• and more

Empty AUTOSAR model The emptyAutosarModel(String, AsrPath, BiTransformer) method
creates a new empty AUTOSAR model, only containing one MIARPackage created by this method
with the path AsrPath. The passed AUTOSAR version defines the version of the AUTOSAR
model, the version is specified in the format "4.2.1" or "4.0.3", ...

scriptTask (" taskName ", DV_APPLICATION) {
code {

def asrPkgToCreate = AsrPath . create ("/MyPkg")
def autosarVersion = "4.2.1"

projects .raw. emptyAutosarModel (autosarVersion , asrPkgToCreate) {
modelProject , myPkg ->
// modelProject is the created IProject
// myPkg is the MIARPackage specified above with asrPkgToCreate

// Now you could use the model like any other project :
transaction {

// For example create a new sub package :
def mySubPkg = myPkg. withSubPackage (). byNameOrCreate (" MySubPkg ")

}

// Then export the package content
def exportFolder = paths. getTempFolder ()
persistency . modelExport . exportModelTree (exportFolder , myPkg)

}
}

}

Listing 5.72: Create an empty AUTOSAR model

© 2025, Vector Informatik GmbH 81 of 387

Chapter 5. AutomationInterface API Reference

5.6 Model
5.6.1 Introduction
The model API provides means to retrieve AUTOSAR model content and to modify AUTOSAR
data. This comprises Ecuc data (module configurations and their content) and System Description
data.

In this chapter you’ll first find a brief introduction into the model handling. Here you also find some
simple cut-and-paste examples which allow starting easily with low effort. Subsequent sections
describe more and more details which you can read if required.

Chapter 6 on page 325 may additionally be useful to understand detailed concepts and as a
reference to handle special use cases.

5.6.2 Getting Started
The model API basically provides two different approaches:

• The MDF model is the low level AUTOSAR model. It stores all data read from AUTOSAR
XML files. Its structure is based on the AUTOSAR MetaModel which can be found for
example on the AUTOSAR website. In 6.1 on page 325 you find detailed information about
this model.

• The BswmdModel is a model which wraps the MDF model to provide convenient and
type-safe access to the Ecuc data. It contains, definition based classes for module configura-
tions, containers, parameters and references. The class CanGeneral for example as type-safe
implementation in contrast to the generic AUTOSAR class MIContainer in MDF.

It is strongly recommended to use the BswmdModel model to deal with Ecuc data
because it simplifies scripting a lot.

5.6.2.1 Read the ActiveEcuc

This section provides some typical examples as a brief introduction for reading the Ecuc by means
of the BswmdModel. See chapter 5.6.3.2 on page 92 for more details.

The following example specifies no types for the local variables. It therefore requires no import
statements. A drawback on the other hand is that the type is only known at runtime and you
have no type support in the IDE:

© 2025, Vector Informatik GmbH 82 of 387

https://www.autosar.org/

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName "){
code {

// Gets the module DefRef searching all definitions of this SIP
def moduleDefRef = bswDefRef .EcuC

// Creates all BswmdModel instances with this definition . A List <EcuC > in
this case.

def ecucModules = bswmdModel (moduleDefRef)

// Gets the EcucGeneral container of the first found module instance
def ecuc = ecucModules . single
def ecucGeneral = ecuc. ecucGeneral

// Gets an (enum) parameter of this container
def cpuType = ecucGeneral . CPUType

}
}

Listing 5.73: Read with BswmdModel objects starting with a module DefRef (no type declaration)

In contrast to the listing above the next one implements the same behavior but specifies all
types:

// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc.EcuC
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . EcucGeneral
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . cputype .

CPUType
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . cputype .

ECPUType

scriptTask (" TaskName "){
code {

// Gets the ecuc module configuration
EcuC ecuc = bswmdModel (EcuC). single

// Gets the EcucGeneral container
EcucGeneral ecucGeneral = ecuc. ecucGeneral

// Gets an enum parameter of this container
CPUType cpuType = ecucGeneral . CPUType
if (cpuType .value == ECPUType . CPU32Bit) {

"Do something ..."
}

}
}

Listing 5.74: Read with BswmdModel objects starting with a module class (strong typing)

© 2025, Vector Informatik GmbH 83 of 387

Chapter 5. AutomationInterface API Reference

The bswmdModel() API takes an optional closure argument which is being called for each created
BswmdModel object. This object is used as parameter of the closure:

// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc.EcuC
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . cputype .

ECPUType

scriptTask (" TaskName "){
code {

// Executes the closure with all instances of this definition
bswmdModel (EcuC) {

// The related BswmdModel instance is parameter of this closure
ecuc ->

if (ecuc. ecucGeneral . CPUType .value == ECPUType . CPU32Bit) {
"Do something ..."

}
}

}
}

Listing 5.75: Read with BswmdModel objects with closure argument

Additionally, to the DefRef, an already available MDF model object can be specified to create the
related BswmdModel object for it:

// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . EcucGeneral
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . cputype .

ECPUType

scriptTask (" TaskName "){
code {

// Gets the MDF model instance of the Ecuc General container
def container = mdfModel (EcucGeneral . DefRef). single

// Executes the closure with this MDF object instance
bswmdModel (container , EcucGeneral . DefRef) {

// The related BswmdModel instance is parameter of this closure
ecucGeneral ->

if (ecucGeneral . CPUType .value == ECPUType . CPU32Bit) {
"Do something ..."

}
}

}
}

Listing 5.76: Read with BswmdModel object for an MDF model object

For a generic access to Ecu configuration structure (e.g. to use the script with different BSW
packages and different platforms/derivatives) the untyped model in combination with BswDefRefs

© 2025, Vector Informatik GmbH 84 of 387

Chapter 5. AutomationInterface API Reference

can be used. See chapter 5.6.3.5 on page 94 and 5.6.3.7 on page 96 for more details:

// Required imports
import com. vector .cfg.gen.core. bswmdmodel . GIContainer
import com. vector .cfg.gen.core. bswmdmodel . GIParameter

scriptTask (" TaskName "){
code {

GIContainer ecucGen = bswmdModel (bswDefRef . EcucGeneral). single

GIParameter <Boolean > ecuCSafeBswChecks = ecucGen . getParameter (bswDefRef .
EcuCSafeBswChecks)

if (ecuCSafeBswChecks . valueMdf . booleanValue ()) {
"Do something ..."

}
}

}

Listing 5.77: Read with BswmdModel objects with the untyped model (DefRefAPI)

© 2025, Vector Informatik GmbH 85 of 387

Chapter 5. AutomationInterface API Reference

5.6.2.2 Write the ActiveEcuc

This section provides some typical examples as a brief introduction for writing the Ecuc by means
of the BswmdModel. See chapter 5.6.3.3 on page 93 for more details.

For the most cases the entry point for writing the ActiveEcuc is a (existing) module configuration
object which can be retrieved with the bswmdModel() API. Because the model is in read-only
state by default, every call to an API which creates or deletes elements has to be executed in a
transaction() block.
// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc.EcuC
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . EcucGeneral

scriptTask (" TaskName "){
code {

transaction {
// Gets the first found ecuc module instance
EcuC ecuc = bswmdModel (EcuC). single

// Gets the EcucGeneral container or create one if it is missing
EcucGeneral ecucGeneral = ecuc. ecucGeneralOrCreate

// Gets an boolean parameter of this container or create one if it is
missing

def ecuCSafeBswChecks = ecucGeneral . ecuCSafeBswChecksOrCreate

// Sets the parameter value to true
ecuCSafeBswChecks .value = true

}
saveProject ()

}}

Listing 5.78: Write with BswmdModel required/optional objects

© 2025, Vector Informatik GmbH 86 of 387

Chapter 5. AutomationInterface API Reference

// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc.EcuC
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecuchardware .

ecuccoredefinition . EcucCoreDefinition

scriptTask (" TaskName "){
code {

transaction {
// Gets the first found ecuc module instance
EcuC ecuc = bswmdModel (EcuC). single

// Gets the EcucCoreDefinition list (creates ecucHardware if it is
missing)

def ecucCoreDefinitions = ecuc. ecucHardwareOrCreate . ecucCoreDefinition

// Adds two EcucCores
EcucCoreDefinition core0 = ecucCoreDefinitions . createAndAdd (" EcucCore0

")
EcucCoreDefinition core1 = ecucCoreDefinitions . createAndAdd (" EcucCore1

")

if(ecucCoreDefinitions . exists (" EcucCore0 ")) {
// Sets EcucCoreId to 0
ecucCoreDefinitions . byName (" EcucCore0 "). ecucCoreId . setValue (0)

}

// Creates a new EcucCore by method 'byNameOrCreate '
EcucCoreDefinition core2 = ecucCoreDefinitions . byNameOrCreate ("

EcucCore2 ")
}

saveProject ()
}}

Listing 5.79: Write with BswmdModel multiple objects

// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc.EcuC
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . EcucGeneral

scriptTask (" TaskName "){
code {

transaction {
// Gets the first found ecuc module instance
EcuC ecuc = bswmdModel (EcuC). single

// Duplicates container 'EcucGeneral ' and all its children
EcucGeneral ecucGeneral_Dup = ecuc. ecucGeneral . duplicate ()

}
saveProject ()

}
}

Listing 5.80: Write with BswmdModel - Duplicate a container

© 2025, Vector Informatik GmbH 87 of 387

Chapter 5. AutomationInterface API Reference

// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . EcucGeneral

scriptTask (" TaskName "){
code {

transaction {
// Gets the first found ecuc module instance
EcucGeneral ecucGeneral = bswmdModel (EcucGeneral). single

// Deletes 'ecucGeneral ' from model
ecucGeneral . moRemove ()

// Checks if the container 'ecucGeneral ' was removed from repository
if(ecucGeneral . moIsRemoved ()) {

"Do something ..."
}

}
saveProject ()

}
}

Listing 5.81: Write with BswmdModel - Delete elements

© 2025, Vector Informatik GmbH 88 of 387

Chapter 5. AutomationInterface API Reference

5.6.2.3 Read the SystemDescription

This section contains only one example for reading the SystemDescription by means of the MDF
model. See chapter 5.6.4.1 on page 97 for more details.

// Required imports
import com. vector .cfg.model.mdf.ar4x. swcomponenttemplate . datatype . dataprototypes .*
import com. vector .cfg.model.mdf.ar4x. commonstructure . datadefproperties .*

scriptTask (" mdfModel ", DV_PROJECT){
code {

// Create a type -safe AUTOSAR path
def asrPath =

AsrPath . create ("/ PortInterfaces / PiSignal_Dummy / DeSignal_Dummy ",
MIVariableDataPrototype)

// Enter the MDF model tree starting at the object with this path
mdfModel (asrPath) { MIVariableDataPrototype prototype ->

// Traverse down to the swDataDefProps
prototype . swDataDefProps .with { MISwDataDefProps swDataDefPropsParam

->

// swDataDefPropsVariant is a List < MISwDataDefPropsConditional >
// Execute the following for ALL elements of this List
swDataDefPropsParam . swDataDefPropsVariant .each {

MISwDataDefPropsConditional swDataDefPropsCondParam ->

// Resolve the dataConstr reference (type MIDataConstr)
def target = swDataDefPropsCondParam . dataConstr . refTarget

// Get the swCalibrationAccess enum value
def access = swDataDefPropsCondParam . swCalibrationAccess
assert access == MISwCalibrationAccessEnum . NOT_ACCESSIBLE

}
}

}
}

}

Listing 5.82: Read system description starting with an AUTOSAR path in closure

The same sample as above, but in property access style instead of closures:

© 2025, Vector Informatik GmbH 89 of 387

Chapter 5. AutomationInterface API Reference

// Create a type -safe AUTOSAR path
def asrPath =

AsrPath . create ("/ PortInterfaces / PiSignal_Dummy / DeSignal_Dummy ",
MIVariableDataPrototype)

def prototype = mdfModel (asrPath)
def swDataDefPropsParam = prototype . swDataDefProps

// Execute the following for ALL swDataDefPropsVariant
swDataDefPropsParam . swDataDefPropsVariant .each{ swDataDefPropsCondParam ->

// Resolve the dataConstr reference (type MIDataConstr)
def target = swDataDefPropsCondParam . dataConstr . refTarget

// Get the swCalibrationAccess enum value
def access = swDataDefPropsCondParam . swCalibrationAccess
assert access == MISwCalibrationAccessEnum . NOT_ACCESSIBLE

}

Listing 5.83: Read system description starting with an AUTOSAR path in property style

5.6.2.4 Write the SystemDescription

Writing the system description looks quite similar to the reading, but you have to use methods
like (see chapter 5.6.4.3 on page 102 for more details):

• get<Element>OrCreate() or <element>OrCreate

• createAndAdd()

• byNameOrCreate()

You have to open a transaction before you can modify the MDF model, see chapter 5.6.6 on
page 118 for details.

The following samples show the different types of write API:

transaction {
// The asrPath points to an MIVariableDataPrototype
mdfModel (asrPath) { dataPrototype ->

dataPrototype . category = " NewCategory "
}

}

Listing 5.84: Changing a simple property of an MIVariableDataPrototype

transaction {
// The asrPath points to an MIVariableDataPrototype
mdfModel (asrPath) {

int count = 0
assert adminData == null
withAdminData (). orCreate .with {

count ++
}
assert count == 1
assert adminData != null

}
}

Listing 5.85: Creating non-existing member by navigating into its content with OrCreate()

© 2025, Vector Informatik GmbH 90 of 387

Chapter 5. AutomationInterface API Reference

transaction {
// The asrPath points to an MIVariableDataPrototype
mdfModel (asrPath) {

assert adminData .sdg.empty

adminData .with {
withSdg (). create {

it.gid = " NewGidValue "
}

}

assert adminData .sdg.first.gid == " NewGidValue "
}

}

Listing 5.86: Creating new members of child lists with createAndAdd() by type

transaction {
// The path points to an MISenderReceiverInterface
mdfModel (asrPath) { MISenderReceiverInterface sendRecIf ->

def dataElementRelation = sendRecIf . withDataElement ()

def dataElement = dataElementRelation . byNameOrCreate (" MyDataElement ")
dataElement .name = " NewName "

def dataElement2 = dataElementRelation . byNameOrCreate (" NewName ")

assert dataElement == dataElement2
}

}

Listing 5.87: Updating existing members of child lists with byNameOrCreate() by type

© 2025, Vector Informatik GmbH 91 of 387

Chapter 5. AutomationInterface API Reference

5.6.3 BswmdModel in AutomationInterface
The AutomationInterface contains a generated BswmdModel. The BswmdModel provides classes
for all Ecuc elements of the AUTOSAR model (ModuleConfigurations, Containers, Parameter,
References). The BswmdModel is automatically generated from the SIP of the DaVinci Configu-
rator.

You should use the BswmdModel whenever possible to access Ecuc elements of the AUTOSAR
model. For accessing the Ecuc elements with the BswmdModel, see chapter 5.6.3.2.

For a detailed description of the BswmdModel, see chapter 6.3.1 on page 338.

5.6.3.1 BswmdModel Package and Class Names

The generated model is contained in the Java package com.vector.cfg.automation.model.ecuc.
Every Module has its own sub packages with the name:

• com.vector.cfg.automation.model.ecuc.<AUTOSAR-PKG>.<SHORTNAME>

– e.g. com.vector.cfg.automation.model.ecuc.microsar.dio

– e.g. com.vector.cfg.automation.model.ecuc.autosar.ecucdefs.can

The packages then contain the class of the element like Dio for the module. The full path would
be com.vector.cfg.automation.model.ecuc.microsar.dio.Dio.

For the container DioGeneral it would be:

• com.vector.cfg.automation.model.ecuc.microsar.dio.diogeneral.DioGeneral

To use the BswmdModel in script files, you have to write an import, when accessing the class:

// The required BswmdModel import of the class Dio
import com. vector .cfg. automation .model.ecuc. microsar .dio.Dio

scriptTask (" TaskName "){
code{

Dio. DefRef // Usage of the class Dio
}

}

Listing 5.88: BswmdModel usage with import

5.6.3.2 Reading with BswmdModel

The bswmdModel() methods provide entry points to start navigation through the ActiveEcuc.
Client code can use the Action/groovy.lang.Closure overloads to navigate into the content of
the found bswmd objects. Inside the called code the related bswmd object is available as closure
parameter.

The following types of entry points are provided here:

• bswmdModel(WrappedTypedDefRef) searches all objects with the specified definition and
returns the BswmdModel instances.

• bswmdModel(Class) searches all objects with the specified class and returns the Bswmd-
Model instances. Finds the same elements as above.

© 2025, Vector Informatik GmbH 92 of 387

Chapter 5. AutomationInterface API Reference

• bswmdModel(MIHasDefinition, WrappedTypedDefRef) returns the BswmdModel instance
for the provided MDF model instance.

• bswmdModel(Class, String) searches all objects with the specified class and the matching
path, see IMdfModelApi#mdfModel(String) or chapter 5.6.4.2 on page 100 for details.

When a closure is being used, the object found by bswmdModel() is provided as parameter when
the closure is called.

The bswmdModel() method itself returns the found objects too. Retrieving the objects member
and children (Container, Parameter) as properties or methods are then possible directly using the
returned object.

Examples:

code {
// Gets the ecuc module configuration
EcuC ecuc = bswmdModel (EcuC). single

}

Listing 5.89: Read with BswmdModel the EcuC module configuration

Or the same with a DefRef instead of a Class:
code {

// Gets the ecuc module configuration
EcuC ecuc = bswmdModel (EcuC. DefRef). single

}

Listing 5.90: Read with BswmdModel the EcuC module configuration with DefRef

For more usage samples please see chapter 5.6.2.1 on page 82.

5.6.3.3 Writing with BswmdModel

As well as for reading with BswmdModel the entry points for writing with BswmdModel are also
the bswmdModel() methods. There has to be at least one existing element in the ActiveEcuc from
which the navigation can be started. For the most cases the entry point for writing the ActiveEcuc
is the module configuration.

Example:

code {
transaction {

// Gets the ecuc module configuration
EcuC ecuc = bswmdModel (EcuC). single

// Gets the EcucGeneral container or create one if it is missing
EcucGeneral ecucGeneral = ecuc. ecucGeneralOrCreate

}
saveProject ()

}

Listing 5.91: Write with BswmdModel the EcucGeneral container

For more usage samples please see chapter 5.6.2.2 on page 86.

The model is in read-only state by default, so no objects could be created. For this reason all calls
which creates or deletes elements has to be executed within a transaction() block.

© 2025, Vector Informatik GmbH 93 of 387

Chapter 5. AutomationInterface API Reference

See 6.3.1.9 on page 346 for more details about the BswmdModel write API.

5.6.3.4 Declaration with BswmdModel

The BswmdModel supports declaration API to declare an AUTOSAR ECU configuration structure
in code, which is then synchronized with the existing structure to create elements in a declarative
way.

The model is in read-only state by default, so no objects could be created. For this reason all calls
which creates or deletes elements has to be executed within a transaction() block.

Example:

code {
transaction {

EcuC ecuc = bswmdModel (EcuC). single
ecuc. declare {

EcucGeneral {
EcuCSafeBswChecks (true)

}
}

}
}

Listing 5.92: Usage of BswmdModel Declaration API with the EcucGeneral container

See 6.3.1.10 on page 350 for more details about the BswmdModel Declaration API.

5.6.3.5 Bsw DefRefs

The sipDefRef API provides access to retrieve generated DefRef instances from the SIP without
knowing the correct Java/Groovy imports. This is mainly useful in script files, where no IDE helps
with the imports.

If you are using an Automation Script Project you can ignore this API and use the
DefRefs provided by the generated classes, which is superior to this API, because they are typesafe
and compile time checked. See 5.6.3.6 on the next page for details.

The listing show the usage of the bswDefRef API with short names and definition paths.

© 2025, Vector Informatik GmbH 94 of 387

Chapter 5. AutomationInterface API Reference

code{
def theDefRef
// You can call bswDefRef .<ShortName >
theDefRef = bswDefRef . EcucGeneral
theDefRef = bswDefRef .Dio
theDefRef = bswDefRef . DioPort

// Or you can use the [] notation
theDefRef = bswDefRef ["Dio"]
theDefRef = bswDefRef [" DioChannelGroup "]

// If the DefRef is not unique you have to specify the full definition
theDefRef = bswDefRef ["/ MICROSAR /EcuC/ EcucGeneral "]
theDefRef = bswDefRef ["/ MICROSAR /Dio"]
theDefRef = bswDefRef ["/ MICROSAR /Dio/ DioConfig / DioPort "]

// Wildcards are also allowed
theDefRef = bswDefRef ["/[ANY]/ Adc"]

}

Listing 5.93: Usage of the bswDefRef API to retrieve DefRefs in script files

You can also check if a certain DefRef exists in the currently loaded SIP. The method hasDe-
fRef(String) returns true, if the definition exists. This is helpful to check for existence of the
definition before using it to prevent e.g. LinkageErrors.

if(bswDefRef . hasDefRef ("Dio")){
// Now we know the Dio module exists in the SIP
def theDefRef = bswDefRef .Dio

}

Listing 5.94: Check if a definition exists in the SIP

5.6.3.6 BswmdModel DefRefs

The generated BswmdModel classes contain DefRef instances for each definition element (Modules,
Containers, Parameters). You should always prefer this API over the Sip DefRefs, because this is
type safe and checked during compile time.

You can use the DefRefs by calling <ModelClassName>.DefRef. The literal DefRef is a static
constant in the generated classes.

For simple parameters like Strings, Integer there is no generated class, so you have to call the
method on its parent container like <ParentContainerClass>.<ParameterShortName>DefRef.

There exist generated classes for Parameters of type Enumeration and References to Container
and therefore you have both ways to access the DefRef:

• <ModelClassName>.DefRef or

• <ParentContainerClass>.<ParameterShortName>DefRef

To use the DefRefs of the classes you have to add imports in script files, see chapter 5.6.3.1 on
page 92 for required import names.

© 2025, Vector Informatik GmbH 95 of 387

Chapter 5. AutomationInterface API Reference

// Required imports
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . EcucGeneral
import com. vector .cfg. automation .model.ecuc. microsar .ecuc. ecucgeneral . cputype .

CPUType

scriptTask (" TaskName "){
code {

def theDefRef

// DefRef from EcucGeneral container
theDefRef = EcucGeneral . DefRef

// DefRef from generated parameter
theDefRef = CPUType . DefRef
//Or the same
theDefRef = EcucGeneral . CPUTypeDefRef

// DefRef from simple parameter
theDefRef = EcucGeneral . AtomicBitAccessInBitfieldDefRef
theDefRef = EcucGeneral . DummyFunctionDefRef

}
}

Listing 5.95: Usage of generated DefRefs form the bswmd model

5.6.3.7 Untyped Model with the DefRef API

The untyped Model provides a generic access to the Ecu configuration structure via DefRefs.
There are NO generated classes for the Definition structure.

To use the untyped Model, the BswDefRefs can be used:

// Required imports
import com. vector .cfg.gen.core. bswmdmodel . GIModuleConfiguration
import com. vector .cfg.gen.core. bswmdmodel . GIContainer
import com. vector .cfg.gen.core. bswmdmodel . GIParameter

scriptTask (" TaskName "){
code {

GIModuleConfiguration ecuc = bswmdModel (bswDefRef .EcuC). single

// If the short name is not unique , you can use the full definition as
string (DefRef wildcards are allowed , e.g. [/ ANY])

GIContainer ecucPduCollection = ecuc. getSubContainer (bswDefRef ["/ MICROSAR /
EcuC/ EcucPduCollection "])

List < GIContainer > pdus = ecucPduCollection . getSubContainers (bswDefRef ["/
MICROSAR /EcuC/ EcucPduCollection /Pdu"])

GIContainer pdu = pdus.get (0)

GIParameter <Integer > pduLength = pdu. getParameter (bswDefRef ["/ MICROSAR /
EcuC/ EcucPduCollection /Pdu/ PduLength "])

" PduLength : " + pduLength . getValueMdf (). intValue ()
}

}

Listing 5.96: Usage of the untyped BswmdModel with BswDefRefs

© 2025, Vector Informatik GmbH 96 of 387

Chapter 5. AutomationInterface API Reference

See chapter 6.3.1.2 on page 340 for more details.

5.6.3.8 Switching from Domain Models to BswmdModel

You can switch from domain models to the BswmdModel, if the domain model is backed by
ActiveEcuC elements. Please read the documentation of the different domain models, for whether
this is possible for a certain domain model.

To switch from a domain model to the BswmdModel, you can call one of the methods for IHasMod-
elObjects like, bswmdModel(IHasModelObject, WrappedTypedDefRef). But you need a DefRef
to get the type safe BswmdModel object. The domain model documents, which DefRef must be
used for the certain domain model object.

// Domain model object of the communication domain
ICanController canDomainModel = ...

def canControllerBswmd = canDomainModel . bswmdModel (CanController . DefRef)

// Or use a closure
canDomainModel . bswmdModel (CanController . DefRef){ canControllerBswmd ->

// Use the bswmd object
}

Listing 5.97: Switch from a domain model object to the corresponding BswmdModel object

5.6.4 MDF Model in AutomationInterface
Access to the MDF model is required in all areas which are not covered by the BswmdModel. This
is the SystemDescription (non-Ecuc data) and details of the Ecuc model which are not covered by
the BswmdModel.

The MDF model implements the raw AUTOSAR data model and is based on the AUTOSAR
meta-model. For details about the MDF model, see chapter 6.1 on page 325.

For more details concerning the methods mentioned in this chapter, you should also read the
JavaDoc sections in the described interfaces and classes.

5.6.4.1 Reading the MDF Model

The mdfModel() methods provide entry points to start navigation through the MDF model. Client
code can use the Closure overloads to navigate into the content of the found MDF objects. Inside
the called closure the related MDF object is available as closure parameter.

The following types of entry points are provided here:

• mdfModel(TypedAsrPath) searches an object with the specified AUTOSAR path

• mdfModel(TypedDefRef) searches all objects with the specified definition

• mdfModel(Class) searches all objects with the specified model type (meta class)

• mdfModel(String) searches for model elements with by different properties, see 5.6.4.2 on
page 100 for details.

• mdfModel(MIObject, String) searches for model elements by giving a root element and a
relative path, see 5.6.4.2 on page 101 for details.

© 2025, Vector Informatik GmbH 97 of 387

Chapter 5. AutomationInterface API Reference

When a closure is being used, the object found by mdfModel() is provided as parameter when this
closure is called:
code {

// Create a type -safe AUTOSAR path for a MIVariableDataPrototype
def asrPath =

AsrPath . create ("/ PortInterfaces / PiSignal_Dummy / DeSignal_Dummy ",
MIVariableDataPrototype)

// Use the Java -Style syntax
def dataDefPropsMdf = mdfModel (asrPath). swDataDefProps

// Or use the Closure syntax to navigate

// Enter the MDF model tree starting at the object with this path
mdfModel (asrPath) {

// Parameter type is MIVariableDataPrototype :
dataPrototype ->

// Traverse down to the swDataDefProps
dataPrototype . swDataDefProps .each { MISwDataDefProps props ->

scriptLogger .info "Do something ..."
}

}

saveProject ()
}

Listing 5.98: Navigate into an MDF object starting with an AUTOSAR path

The mdfModel() method itself returns the found object too. Retrieving the objects member (as
property) is then possible directly using the returned object.

Naming of the interface classes to create the type safe AUTOSAR path is described in chapter 6.1
on page 325.

An alternative is using a closure to navigate into the MDF object and access its member there:

// Get an MDF object and get its members directly
def obj = mdfModel (asrPath) // Type MIVariableDataPrototype
def props = obj. swDataDefProps // Type MISwDataDefProps

// Get an MDF object and get its members using a closure
def props2
def obj2 = mdfModel (asrPath) {

props2 = swDataDefProps
}

// The results are the same
assert obj == obj2
assert props == props2

Listing 5.99: Find an MDF object and retrieve some content data

Closures can be nested to navigate deeply into the MDF model tree:

© 2025, Vector Informatik GmbH 98 of 387

Chapter 5. AutomationInterface API Reference

mdfModel (asrPath) {
int count = 0
swDataDefProps .with {

// swDataDefPropsVariant is a List < MISwDataDefPropsConditional >
// Execute the following for ALL elements of this List
List v = swDataDefPropsVariant .each {

scriptLogger .info "Do something ..."
count ++

}
}
assert count >= 1

}

Listing 5.100: Navigating deeply into an MDF object with nested closures

When a member doesn’t exist during navigation into a deep MDF model tree, the specified closure
is not called:
mdfModel (asrPath) {

int count = 0
assert adminData == null
adminData ?. with {

count ++
}
assert count == 0

}

Listing 5.101: Ignoring non-existing member closures

Retrieving a Child by Shortname or Definition There are multiple ways to retrieve children from
an MDF model object, by the shortname or by its definition. The shortname can be used at the
object with childByName() or at the child list with byName().

childByName The childByName(MIARObject, String, Action) method calls the passed Ac-
tion, if the request child exists. And returns the child [MIReferrable] below the specified object
which has this relative AUTOSAR path (not starting with ’/’).

MIContainer canGeneral = ...
canGeneral . childByName (" CanMainFunctionRWPeriods "){ child ->

//Do something
}

Listing 5.102: Get a MIReferrable child object by name

Lists containing Referrables

• The method byName(String) retrieves the child with the shortname, or null, if no child
exists with this shortname.

• The method byName(String, Closure) retrieves the child with the shortname, or null, if
no child exists with this shortname. Then the closure is executed with the child as closure
parameter, if the child is not null. The child is finally returned.

• The method byName(Class, String) retrieves the child with the shortname and type, or
null, if no child exists with this shortname.

© 2025, Vector Informatik GmbH 99 of 387

Chapter 5. AutomationInterface API Reference

• The method byName(Class, String, Closure) retrieves the child with the shortname and
type, or null, if no child exists with this shortname. Then the closure is executed with the
child as closure parameter, if the child is not null. The child is finally returned.

• The method getAt(String) all members with this relative AUTOSAR path. Groovy also
allows to write list["ShortnameToSearchFor"].

// The asrPath points to an MISenderReceiverInterface
MISenderReceiverInterface prototype = mdfModel (asrPath)

// byName () with shortname
def data1 = prototype . withDataElement (). byName (" DeSignal_Dummy ")
assert data1.name == " DeSignal_Dummy "

Listing 5.103: Retrieve child from list with byName()

Lists containing Parameters and Containers

• The method getAt(TypedDefRef) returns all children with the passed definition. Groovy
also allows to write list[DefRef].

5.6.4.2 Reading the MDF Model by String

The method mdfModel(String) searches for model elements by multiple ways at once. The method
evaluates the specified property in the following order, it will continue, if nothing was found:

• AUTOSAR path, see mdfModel(AsrPath), if the path begins with an ’/’ and the model
element is no definition object (MIParamConfMultiplicity)

– Example: /ActiveEcuc/MyCan/MyContainer

• ObjectLink, see AsrObjectLink, if the path begins with an ’/’ and the model element is no
definition object (type MIParamConfMultiplicity)

– Example: /ActiveEcuc/MyCan/MyContainer[0:ParameterDef]

• Definition path, see mdfModel(DefRef), if the path begins with an ’/’

– Example: /MICROSAR/Can2

• Relative path, see mdfModel(MIObject, String), the relative path may not start with an
’/’. See 5.6.4.2 on the following page for more details.

• MICROSAR QUERY, if the path begins with "msrq:". The defined Microsar Query, filters
the configuration elements
by the given arbitrary filter code. The filter must be evaluable to a String, Boolean or
Pattern. The Microsar Query can be used for modules, containers and parameters. See
5.6.4.2 on page 102 for more details.

• AUTOSAR path relative to the ActiveEcuc package, if it does not begin with an ’/’

– Example: MyCan/MyContainer

• Definition path as DefRef with wildcard ANY starting at the moduleConfiguration, if it does
not begin with an ’/’

– Example: Can/CanGeneral

© 2025, Vector Informatik GmbH 100 of 387

Chapter 5. AutomationInterface API Reference

• Definition path as DefRef with wildcards, if it does begin with a valid wildcard like /[ANY],
see EDefRefWildcard.

– Example: /[ANY]/Can/CanGeneral

• Shortname of an MIARElement if the path does not contain any ’/’.

– Example: MyContainer

This method does not limit the search to the ActiveEcuC, so it can be used to retrieve any object
with the path String.

Remark: Even in post-build selectable variant models this method expects to find at most one
object because script code will never run in an unfiltered context.

Caution: This is a potentially slow operation, you should use other mdfModel() methods, if
possible. Because this method must traverse the whole model in some cases.

def moduleCfg1 = mdfModel ("/ ActiveEcuC /Can"). single
def moduleCfg2 = mdfModel ("Can"). single
def moduleCfg3 = mdfModel ("/[ANY]/ Can"). single
def parameter = mdfModel ("/ ActiveEcuc /MyCan/ MyContainer [0: ParameterDef]").

singleOrNull

Listing 5.104: Get elements with mdfModel(String)

Relative search - mdfModel(MIObject, String) Retrieves model elements based on the root
element. The system navigates relative to the model element based on the root element. The
relative path may not start with an ’/’. In case of a variant project the collection may have more
than one entry.
// Required imports
import com. vector .cfg.model. access . AsrPath
import com. vector .cfg.model.mdf.model. autosar . ecucparamdef . MIContainerDef

scriptTask (" mdfModel ", DV_PROJECT){
code {

// Reading a definition element
def asrPath = AsrPath . create ("/ MICROSAR / Can_CanoeemuCanoe /Can/ CanConfigSet

", MIContainerDef)
def root = mdfModel (asrPath)
def reqElem = mdfModel (root , " CanController / CanFilterMask "). getFirst ()

}
}

Listing 5.105: Read definitions elements with a relative path using the mdfModel

© 2025, Vector Informatik GmbH 101 of 387

Chapter 5. AutomationInterface API Reference

// Required imports
import com. vector .cfg.model. access . AsrPath
import com. vector .cfg.model.mdf.model. autosar . ecucdescription . MIContainer

scriptTask (" mdfModel ", DV_PROJECT){
code {

// Reading an activeEcuc element
def asrPath = AsrPath . create ("/ ActiveEcuC /Can/ CanConfigSet ", MIContainer)
def root = mdfModel (asrPath)
def reqElem = mdfModel (root , "

ECU_T_CTP_1_NWT_CTP_CANH_ak72ea5qpue3dstlfi5v43l2z_090525f9_Rx_Ext ").
getFirst ()

}
}

Listing 5.106: Read activeEcuc elements with a relative path using the mdfModel

Msrq search - msrQuery(String path) The method msrQuery(String) searches for model el-
ements by using an arbitrary filter code as closure. The method evaluates the specified pattern
and returns the matching model elements. If nothing was found, it returns an empty list.

The input string defined as an MICROSAR QUERY, filters the configuration elements by the
given arbitrary filter code. The arbitrary filter code must be defined inside of the { } . The filter
code must be evaluable to a String, Boolean or Pattern.

Examples:

• /MICROSAR/Crc/CrcGeneral{ true }

• /MICROSAR/Crc/CrcGeneral{ ~"[\\w]*[123l]\$" }

• /MICROSAR/Crc/CrcGeneral{ "CrcGeneral" }

• /MICROSAR/Crc/CrcGeneral{ it.getName() == "CrcGeneral" }

• /MICROSAR/Crc/CrcGeneral{ elem -> elem.getName() == "CrcGeneral" }

• /MICROSAR/Crc/CrcGeneral{ getName() == "CrcGeneral" }

• /MICROSAR/Crc/CrcGeneral{ it.getName().contains("CrcGeneral") }

• /[ANY]/Crc/CrcGeneral/{ true }

5.6.4.3 Writing the MDF Model

Writing to the MDF model can be done with the same mdfModel(AsrPath) API, but you have to
call specific methods to modify the model objects. The methods are devided in the following use
cases:

• Change a simple property like Strings

• Change or create a single child relateion (0:1)

• Create a new child for a child list (0:*)

• Update an existing child from a child list (0:*)

You have to open a transaction before you can modify the MDF model, see chapter 5.6.6 on
page 118 for details about transactions.

© 2025, Vector Informatik GmbH 102 of 387

Chapter 5. AutomationInterface API Reference

5.6.4.4 Simple Property Changes

The properties of MDF model object simply be changed by with the setter method of the model
object. Simple setter exist for example for the types:

• String

• Enums

• Integer

• Double

transaction {
// The asrPath points to an MIVariableDataPrototype
mdfModel (asrPath) { dataPrototype ->

dataPrototype . category = " NewCategory "
}

}

Listing 5.107: Changing a simple property of an MIVariableDataPrototype

5.6.4.5 Creating single Child Members (0:1)

For single child members (0:1), the automation API provides and additional method for the get-
ter get<Element>OrCreate() for convenient child object creation. The methods will create the
element, instead of returning null.

transaction {
// The asrPath points to an MIVariableDataPrototype
mdfModel (asrPath) {

int count = 0
assert adminData == null
withAdminData (). orCreate .with {

count ++
}
assert count == 1
assert adminData != null

}
}

Listing 5.108: Creating non-existing member by navigating into its content with OrCreate()

If the compile time child type is not instatiatable, you have to provide the concrete type by
get<Element>OrCreate(Class childType).

transaction {
// The asrPath points to an MIVariableDataPrototype
mdfModel (asrPath) {

withIntroduction (). getOrCreate (MIBlockLevelContent).with { docuBlock ->
assert docuBlock instanceof MIBlockLevelContent

}
}

}

Listing 5.109: Creating child member by navigating into its content with OrCreate() with type

© 2025, Vector Informatik GmbH 103 of 387

Chapter 5. AutomationInterface API Reference

5.6.4.6 Creating and adding Child List Members (0:*)

For child list members, the automation API provides many createAndAdd() methods for conve-
nient child object creation. These method will always create the element, regardless if the same
element (e.g. same ShortName) already exists.

If you want to update element see the chapter 5.6.4.7 on page 106.

transaction {
// The asrPath points to an MIVariableDataPrototype
mdfModel (asrPath) {

assert adminData .sdg.empty

adminData .with {
withSdg (). create {

it.gid = " NewGidValue "
}

}

assert adminData .sdg.first.gid == " NewGidValue "
}

}

Listing 5.110: Creating new members of child lists with createAndAdd() by type

These methods are available — but be aware that not all of these methods are available for all
child lists. Adding parameters, for example, is only permitted in the parameter child list of an
MIContainer instance.

All Lists:

• The method createAndAdd() creates a new MDF object of the lists content type and appends
it to this list. If the type is not instantiatable the method will thrown a ModelException.
The new object is finally returned.

• The method createAndAdd(Closure) creates a new MDF object of the lists content type
and appends it to this list. If the type is not instantiatable the method will thrown a
ModelException. Then the closure is executed with the new object as closure parameter.
The new object is finally returned.

• The method createAndAdd(Class) creates a new MDF object of the specified type and
appends it to this list. The new object is finally returned.

• The method createAndAdd(Class, Closure) creates a new MDF object of the specified
type and appends it to this list. Then the closure is executed with the new object as closure
parameter. The new object is finally returned.

• The method createAndAdd(Class, Integer) creates a new MDF object of the specified
type and inserts it to this list at the specified index position. The new object is finally
returned.

• The method createAndAdd(Class, Integer, Closure) creates a new MDF object of the
specified type and inserts it to this list at the specified index position. Then the closure is
executed with the new object as closure parameter. The new object is finally returned.

Lists containing Referrables

© 2025, Vector Informatik GmbH 104 of 387

Chapter 5. AutomationInterface API Reference

• The method createAndAdd(String) creates a new child with the specified shortname and
appends it to this list. The new object is finally returned. The used type is the lists content
type. If the type is not instantiatable the method will thrown a ModelException.

• The method createAndAdd(String, Closure) creates a new MIReferrable with the spec-
ified shortname and appends it to this list. Then the closure is executed with the new object
as closure parameter. The new object is finally returned. The used type is the lists content
type. If the type is not instantiatable the method will thrown a ModelException.

• The method createAndAdd(Class, String) creates a new MIReferrable with the specified
type and shortname and appends it to this list. The new object is finally returned.

• The method createAndAdd(Class, String, Closure) creates a new MIReferrable with
the specified type and shortname and appends it to this list. Then the closure is executed
with the new object as closure parameter. The new object is finally returned.

• The method createAndAdd(Class, String, Integer) creates a new MIReferrable with
the specified type and shortname and inserts it to this list at the specified index position.
The new object is finally returned.

• The method createAndAdd(Class, String, Integer, Closure) creates a new MIReferrable
with the specified type and shortname and inserts it to this list at the specified index posi-
tion. Then the closure is executed with the new object as closure parameter. The new object
is finally returned.

Lists containing Parameters and Containers

• The method createAndAdd(TypedDefRef) creates a new Ecuc object (container or param-
eter) with the specified definition and appends it to this list. The new object is finally
returned.

• The method createAndAdd(TypedDefRef, Closure) creates a new Ecuc object (container
or parameter) with the specified definition and appends it to this list. Then the closure is
executed with the new object as closure parameter. The new object is finally returned.

• The method createAndAdd(TypedDefRef, Integer) creates a new Ecuc object (container
or parameter) with the specified definition and inserts it to this list at the specified index
position. The new object is finally returned.

• The method createAndAdd(TypedDefRef, Integer, Closure) creates a new Ecuc object
(container or parameter) with the specified definition and inserts it to this list at the specified
index position. Then the closure is executed with the new object as closure parameter. The
new object is finally returned.

• The method byDefOrCreate(TypedDefRef) retrieves the child with the passed definition,
if the child exists and has a definition multiplicity of 0:1 or 1:1. Otherwise a new child is
created. The definition and shortname (using the definition name) are automatically set
before returning the new child. So this method will always create a new child if the upper
multiplicity is greater than 1.

Lists containing Containers

• The method createAndAdd(TypedDefRef, String) creates a new container with the spec-
ified definition and shortname and appends it to this list. The new container is finally
returned.

© 2025, Vector Informatik GmbH 105 of 387

Chapter 5. AutomationInterface API Reference

• The method createAndAdd(TypedDefRef, String, Closure) creates a new container with
the specified definition and shortname and appends it to this list. Then the closure is executed
with the new container as closure parameter. The new container is finally returned.

• The method createAndAdd(TypedDefRef, String, Integer) creates a new container with
the specified definition and shortname and inserts it to this list at the specified index position.
The new container is finally returned.

• The method createAndAdd(TypedDefRef, String, Integer, Closure) creates a new con-
tainer with the specified definition and shortname and inserts it to this list at the specified
index position. Then the closure is executed with the new container as closure parameter.
The new container is finally returned.

5.6.4.7 Updating existing Elements

For child list members, the automation API provides many byNameOrCreate() methods for con-
venient child object update and creation on demand. These method will create the element if id
does not exists, or return the existing element.

transaction {
// The path points to an MISenderReceiverInterface
mdfModel (asrPath) { MISenderReceiverInterface sendRecIf ->

def dataElementRelation = sendRecIf . withDataElement ()

def dataElement = dataElementRelation . byNameOrCreate (" MyDataElement ")
dataElement .name = " NewName "

def dataElement2 = dataElementRelation . byNameOrCreate (" NewName ")

assert dataElement == dataElement2
}

}

Listing 5.111: Updating existing members of child lists with byNameOrCreate() by type

These methods are available — but be aware that not all of these methods are available for all
child lists. Updating container, for example, is only permitted in the parameter child list of an
MIContainer instance.

Lists containing Referrables

• The method byNameOrCreate(String) retrieves the child with the passed shortname, or
creates the child, if it does not exist. The shortname is automatically set before returning
the new child.

• The method byNameOrCreate(String,Closure) retrieves the child with the passed short-
name, or creates the child, if it does not exist. The shortname is automatically set before
returning the new child. Then the closure is executed with the child as closure parameter.
The child is finally returned.

• The method byNameOrCreate(Class, String) retrieves the child with the passed type and
shortname, or creates the child, if it does not exist. The shortname is automatically set
before returning the new child.

• The method byNameOrCreate(Class, String,Closure) retrieves the child with the passed
type and shortname, or creates the child, if it does not exist. The shortname is automatically

© 2025, Vector Informatik GmbH 106 of 387

Chapter 5. AutomationInterface API Reference

set before returning the new child. Then the closure is executed with the child as closure
parameter. The child is finally returned.

Lists containing Containers

• The method byNameOrCreate(TypedDefRef, String) retrieves the child with the passed
definition and shortname, or creates the child, if it does not exist. The definition and
shortname are automatically set before returning the new child.

• The method byNameOrCreate(TypedDefRef, String, Closure) retrieves the child with
the passed definition and shortname, or creates the child, if it does not exist. The definition
and shortname are automatically set before returning the new child. Then the closure is
executed with the child as closure parameter. The child is finally returned.

5.6.4.8 Deleting Model Objects

The method delete(MIObject) deletes the specified object from the model. This method must
be called inside a transaction because it changes the model content.

Special case: If this method is being called on an active module configuration, it actually calls IOp-
erations.deactivateModuleConfiguration(MIModuleConfiguration) to deactivate the mod-
ule correctly.

// MIParameterValue param = ...

transaction {
assert !param. isDeleted ()
param. delete ()
assert param. isDeleted ()

}

Listing 5.112: Delete a parameter instance

The method moRemove() does the same as delete(). For details about model object deletion and
access to deleted objects, read section 6.1.7.4 on page 329 ff.

IsDeleted The isDeleted(MIObject) method returns true if the specified object has been
deleted (removed) from the MDF model, or is invisible in the current active IModelView.

MIObject obj = ...
if (! obj. isDeleted ()) {

work with obj ...
}

Listing 5.113: Check is a model instance is deleted

Note: The return value is dependent on the current active thread and the current active IMod-
elView in this thread!

The method moIsRemoved() does the same as isDeleted().

5.6.4.9 Duplicating Model Objects

The duplicate() method copies (clones) a complete MDF model sub-tree and adds it as child
below the same parent.

© 2025, Vector Informatik GmbH 107 of 387

Chapter 5. AutomationInterface API Reference

• The source object must have a parent. The clone will be added to the same MDF feature
below the same parent then

• AUTOSAR UUIDs will not be cloned. The clone will contain new UUIDs to guarantee
unambiguousness

This method can clone any model sub-tree, also see IOperations.deepClone(MIObject, MIOb-
ject) for details.

Note: This operation must be executed inside of a transaction.

// MIContainer container = ...
transaction {

def newCont = container . duplicate ()
// The duplicated container newCont

}

Listing 5.114: Duplicates a container under the same parent

5.6.4.10 Special properties and extensions

asrPath The getAsrPath(MIReferrable) method returns the AUTOSAR path of the specified
object.

MIContainer canGeneral = ...
AsrPath path = canGeneral . asrPath

Listing 5.115: Get the AsrPath of an MIReferrable instance

See chapter 6.4.2 on page 354 for more details about AsrPaths.

asrObjectLink The getAsrObjectLink(MIARObject) method returns the AsrObjectLink of the
specified object.

MIParameterValue param = ...
AsrObjectLink link = param. asrObjectLink

Listing 5.116: Get the AsrObjectLink of an AUTOSAR model instance

See chapter 6.4.4 on page 355 for more details about AsrObjectLinks.

defRef The getDefRef() method returns the DefRef of the model object.

MIParameterValue param = ...
DefRef defRef = param. defRef

Listing 5.117: Get the DefRef of an Ecuc model instance

The MIParameterValue.setDefRef(DefRef) method sets the definition of this parameter to the
defRef.

MIParameterValue param = ...
DefRef newDefinition = ...
param. defRef = newDefinition

Listing 5.118: Set the DefRef of an Ecuc model instance

© 2025, Vector Informatik GmbH 108 of 387

Chapter 5. AutomationInterface API Reference

If the specified DefRef has a wildcard, the parameter must have a parent to calculate the absolute
definition path - otherwise a ModelCeHasNoParentException will be thrown.

If it has no wildcard and no parent, the absolute definition path of the defRef will be used.

If the parameter has a parent or and parents definition does not match the defRefs parent definition,
this method fails with InconsistentParentDefinitionException.

The MIContainer.setDefRef(DefRef) method sets the definition of this container to the de-
fRef.

See chapter 6.4.5 on page 356 for more details about DefRefs.

ceState The CeState is an object which aggregates states of a related MDF object. Client code
can e.g. check with the CeState if an Ecuc object has a related pre-configuration value.

The getCeState(MIObject) method returns the CeState of the specified model object.

MIParameterValue param = ...
IParameterStatePublished state = param. ceState

Listing 5.119: Get the CeState of an Ecuc parameter instance

See chapter 6.4.6 on page 359 for more details about the CeState.

ceState - User-defined Flag The method isUserDefined() returns true, if the ecuc configura-
tion element like parameters is flagged as user-defined.

MIParameterValue param = ...
def flag = param . ceState . userDefined

Listing 5.120: Retrieve the user-defined flag of an Ecuc parameter in Groovy

The method setUserDefined(boolean) sets or removes the user-defined flag of an ecuc parame-
ter.

Note: This method must be executed inside a transaction because it modifies the model state.
MIParameterValue param = ...
transaction {

param. ceState . userDefined = true
}

Listing 5.121: "Set an Ecuc Parameter instance to user defined"

EcuConfigurationAccess and EcucDefinitionAccess The Groovy automation interface also pro-
vides special access methods for Ecuc elements (module configurations, container and parameter)
to the

• EcuConfigurationAccess (see 6.5.1 on page 360)

• EcucDefinitionAccess (see 6.5.2 on page 365)

The getEcucDefinition() method returns the IEcucDefinition of the model object.

© 2025, Vector Informatik GmbH 109 of 387

Chapter 5. AutomationInterface API Reference

MIParameterValue param = ...
IEcucDefinition definition = param. ecucDefinition

Listing 5.122: Get the IEcucDefinition of an Ecuc model instance

The getEcuConfiguration() method returns the IEcucHasDefinition of the model object.

MIParameterValue param = ...
IEcucHasDefinition cfg = param. ecuConfiguration

Listing 5.123: Get the IEcucHasDefinition of an Ecuc model instance

These methods are the same as for bswmd model objects.

5.6.4.11 Reverse Reference Resolution - ReferencesPointingToMe

You can resolve all references in the MDF model in the reverse direction, so you can start at a
reference target and navigate to all references which point to the reference target.

referencesPointingToMe The getReferencesPointingToMe() method returns all reference pa-
rameters in the active ecuc pointing to specified target (MIReferrable) object. It returns an empty
collection if the target object is invisible or removed.

The getReferencesPointingToMe(DefRef) method returns all reference parameters in the active
ecuc with the specified definition ([DefRef]) pointing to the specified target ([MIReferrable]) object.
It returns an empty collection if the target object is invisible, removed or the specified definition
is null.
List < MIReferenceValue > refs = container . referencesPointingToMe
//Or
DefRef refDefRef = // DefRef to reference parameter
def refByDef = container . getReferencesPointingToMe (refDefRef)

Listing 5.124: referencesPointingToMe sample

systemDescriptionObjectsPointingToMe The method getSystemDescriptionObjectsPoint-
ingToMe() returns all objects located in the system description which are parent objects of refer-
ences pointing to the specified target. It returns an empty collection if the object is invisible or
removed.
List <MIObject > references =

systemDescElement . systemDescriptionObjectsPointingToMe

Listing 5.125: systemDescriptionObjectsPointingToMe sample

5.6.4.12 Derived Containers

The MIHasContainer.getDerived() method provides access to derived container information.
The method returns a IDerivedElementInfo object corresponding to the model element.

The IDerivedElementInfo can be used to retrieve information about element or delete it:

• getRemovedDerivedSubContainers(): Retrieves the removed children, which could be used
to restore them the children

© 2025, Vector Informatik GmbH 110 of 387

Chapter 5. AutomationInterface API Reference

• isDerived(): returns true if the element is derived

• delete(): deletes the element regardless if it is derived or not

container . derived . isDerived ()
// Or
container . derived {

boolean isDerivedFlag = isDerived ()
def removedList = getRemovedDerivedSubContainers ()

}

Listing 5.126: Derived Container API access

Deletion of Derived Containers The method delete() deletes the MIContainer regardless, if it
is derived or not.

This method behaves as follows:

• If the container is a derived container it calls the derived container deletion operation to
delete it.

• All other containers with be deleted by means of MIObject.deleteFromModel().

transaction {
container . derived . delete ()

}

Listing 5.127: Delete a derived container unconditionally

5.6.4.13 AUTOSAR Root Object

The getAUTOSAR() method returns the AUTOSAR root object (the root object of the MDF model
tree of AUTOSAR data).

MIAUTOSAR root = AUTOSAR

Listing 5.128: Get the AUTOSAR root object

5.6.4.14 ActiveEcuC

The activeEcuc access methods provide access to the module configurations of the Ecuc model.

// Get the modules as Collection < MIModuleConfiguration >
Collection modules = activeEcuc . allModules

Listing 5.129: Get the active Ecuc and all module configurations

© 2025, Vector Informatik GmbH 111 of 387

Chapter 5. AutomationInterface API Reference

// Iterate over all module configurations
activeEcuc {

int count = 0
allModules .each { moduleCfg ->

count ++
}
assert count > 1

}

Listing 5.130: Iterate over all module configurations

activeEcuc {
// Parameter type is IActiveEcuc
ecuc ->

def defRef = DefRef . create (EDefRefWildcard .AUTOSAR , "EcuC")

// Get the modules as Collection < MIModuleConfiguration >
Collection foundModules = ecuc. modules (defRef)
assert ! foundModules .empty

}

Listing 5.131: Get module configurations by definition

5.6.4.15 DefRef based Access to Containers and Parameters

The Groovy automation interface for the MDF model provides some overloaded access methods
for

• MIModuleConfiguration.getSubContainer()

• MIContainer.getSubContainer()

• MIContainer.getParameter()

to offer convenient filtering access to the subContainer and parameter child lists.

activeEcuc {
// Parameter type is IActiveEcuc
ecuc ->

def module = ecuc. modules (EcuC. DefRef).first

// Get containers as List < MIContainer >
def containers = module . subContainer (EcucGeneral . DefRef)

// Get parameters as List < MIParameterValue >
def cpuType = containers .first. parameter (CPUType . DefRef)

assert cpuType .size () == 1
}

Listing 5.132: Get subContainers and parameters by definition

5.6.4.16 Ecuc Parameter and Reference Value Access

The Groovy automation interface also provides special access methods for Ecuc parameter values.
These methods are implemented as extensions of the Ecuc parameter and value types and can

© 2025, Vector Informatik GmbH 112 of 387

Chapter 5. AutomationInterface API Reference

therefore be called directly at the parameter or reference instance.

Value Checks

• MIParameterValue.hasValue() returns true if the parameter (or reference) has a value.

• MINumericalValue.containsBoolean() returns true if the parameter value contains a valid
boolean with the same semantic as IEcucModelAccess.containsBoolean(MINumericalValue).

Call this method in advance to guarantee that MINumericalValueVariationPoint.getAsBoolean()
doesn’t lead to errors.

• MINumericalValue.containsInteger() returns true if the parameter value contains a valid
integer with the same semantic as IEcucModelAccess.containsInteger(MINumericalValue).

Call this method in advance to guarantee that MINumericalValueVariationPoint.getAsInteger()
doesn’t lead to errors.

• MINumericalValue.containsDouble() returns true if the parameter value contains a valid
double (AUTOSAR float) with the same semantic as IEcucModelAccess.containsFloat(MINumericalValue).

Call this method in advance to guarantee that MINumericalValueVariationPoint.getAsDouble()
doesn’t lead to errors.

// MINumericalValue param = ...

if (! param. hasValue ()) {
scriptLogger .warn "The parameter has no value!"

}

if (param. containsInteger ()) {
int value = param.value. asInteger

}

Listing 5.133: Check parameter values

Parameters

• MINumericalValueVariationPoint.getAsLong() returns the value as native long.

Throws NumberFormatException if the value string doesn’t represent an integer value.
Throws ArithmeticException if the value will not exactly fit in a long.

• MINumericalValueVariationPoint.getAsInteger() returns the value as native int.

Throws NumberFormatException if the value string doesn’t represent an integer value.
Throws ArithmeticException if the value will not exactly fit in an int.

• MINumericalValueVariationPoint.getAsBigInteger() returns the value as BigInteger.

Throws NumberFormatException if the value string doesn’t represent an integer value.

• MINumericalValueVariationPoint.getAsDouble() returns the value as Double

Throws NumberFormatException if the value string doesn’t represent a float value.

• MINumericalValueVariationPoint.getAsBoolean() returns the value as Boolean.

Throws NumberFormatException if the value doesn’t represent a boolean value.

© 2025, Vector Informatik GmbH 113 of 387

Chapter 5. AutomationInterface API Reference

• MITextualValue.asCustomEnum(Class) returns the value of the enum parameter as a cus-
tom enum literal. If the Class destClass implements the IEcucEnum interface, the literals
are mapped via these information form the [IEcucEnum] interface. Read the JavaDoc of
[IEcucEnum] for more details.

@param destClass the destination enum class @return the literal mapped via the destClass
or null if not found @see IEcucEnum

// MINumericalValue param = ...
// MINumericalValueVariationPoint is the type of param.value

long longValue = param.value. asLong
assert longValue == 10

int intValue = param.value. asInteger
assert intValue == 10

BigInteger bigIntValue = param.value. asBigInteger
assert bigIntValue == BigInteger . valueOf (10)

Double doubleValue = param.value. asDouble
assert Math.abs(doubleValue -10.0) <= 0.0001

Listing 5.134: Get integer parameter value

References

• MIARRef#getAsAsrPath() returns the reference value as AUTOSAR path.

• MIReferenceValue#getAsAsrPath() returns the reference value as AUTOSAR path.

• MIReferenceValue.getRefTarget() returns the reference parameters target object (the ob-
ject referenced by this parameter). It returns null if the target cannot be resolved or the
reference parameter doesn’t contain a value reference.

// MIReferenceValue refParam = ...

def asrPath1 = refParam . asAsrPath
def asrPath2 = refParam .value. asAsrPath
assert asrPath1 == asrPath2

String pathString = refParam .value.value
assert asrPath1 . autosarPathString == pathString

def target1 = refParam . refTarget
def target2 = refParam .value. refTarget
assert target1 == target2

Listing 5.135: Get reference parameter value

5.6.4.17 Getting and Setting Formula Expression Values

The Groovy automation interface provides special methods to evaluate a formula expression and
replace its content as well. These methods are implemented as extensions of the MIFormulaEx-

© 2025, Vector Informatik GmbH 114 of 387

Chapter 5. AutomationInterface API Reference

pression and therefore they can be called directly at its instances.

Get Expression Value

• The formula expression can contain a simple numeric literal, a boolean literal, or a more
advanced expression that handles references to autosar model elements, arithmetic functions,
special functions, and special values.

Therefore, the method MIFormulaExpression.eval() is used to do the evaluation and return
the result as IFormulaResult.

• The IFormulaResult represents the evaluation result of a MIFormulaExpression. It contains
the numeric value if the formula has been evaluated successfully or the ModelFormulaEx-
ception if an error happened while evaluating the expression.

This interface has the following convenient methods:

– isEvaluated(): Returns True if the expression has been evaluated successfully, or
False if an error has occurred.

– getValue(): It is worthwhile to mention that formula expression always yields a nu-
meric value. Thus, the numeric result of the evaluation will be mainly given using this
method.

– getAsBoolean(): If the provided formula expression is a condition, the result is ex-
pected to be boolean. Therefore, this method can be used to convert the numeric result
to boolean. Zero is considered False, and any other value is considered True.

– getAsFloat(): Returns the numeric value of the formula as double.

– getAsBigDecimal(): Returns the numeric value of the formula as BigDecimal.

– getAsInteger(): Returns the numeric value of the formula as integer:

∗ First, if the origin value is of an integer type, it is returned as it is.

∗ Second, if the origin value can be converted to integer without loss of any informa-
tion, then it is converted and returned.

∗ Otherwise, it throws NumberFormatException stating that ’The formula value is
not an integer’.

– getError(): Returns an Optional of ModelFormulaException. It will be empty if the
formula has been evaluated successfully, or contains the error that occurred.

© 2025, Vector Informatik GmbH 115 of 387

Chapter 5. AutomationInterface API Reference

// arrayElement is MIImplementationDataTypeElement
// arraySizeOrCreate returns MIFormulaExpression
IFormulaResult evalResult = arrayElement . arraySizeOrCreate .eval ()

if (evalResult . evaluated) {
// Get the numeric value
Number value = evalResult .value
// Get the numeric value converted to other types
boolean valueAsBoolean = evalResult . asBoolean
BigInteger valueAsInteger = evalResult . asInteger
double valueAsFloat = evalResult . asFloat

} else {
ModelFormulaException exception = evalResult .error.get ()

}

// This one line statement can also be used to provide quick access , but
// it will throw an exception if the expression was not evaluated successfully .
Number value = arrayElement . arraySizeOrCreate .eval ().value

Listing 5.136: Evaluate formula expression

Set Expression Value

• The method setValue(Number) replaces the content of the passed MIFormulaExpression
by the provided numeric value.

Throws NullPointerException if any of the parameters is null.

• The method setValue(Boolean) replaces the content of the passed MIFormulaExpression
by the string representation of the provided Boolean value.

Throws NullPointerException if any of the parameters is null.

Important Note: These operations must run within a unit of work. The client code is responsible
for opening the transaction before calling these two methods.

transaction {
// arrayElement is MIImplementationDataTypeElement
// arraySizeOrCreate returns MIFormulaExpression
arrayElement . arraySizeOrCreate . setValue (5)

}

Listing 5.137: Set formula expression value

5.6.5 SystemDescription Access
The systemDescription API provides methods to retrieve system description data like the path to
the flat extract or the flat map instance.

It is grouped by the AUTOSAR version. So the getAutosar4() methods provides access to
AUTOSAR 4 model elements.

The getPaths() provides common paths to elements like:

• FlatMap path

• FlatExtract path

• FlatCompositionType path

© 2025, Vector Informatik GmbH 116 of 387

Chapter 5. AutomationInterface API Reference

AsrPath flatExtractPath = systemDescription .paths. flatExtractPath
AsrPath flatMapPath = systemDescription .paths. flatMapPath

Listing 5.138: Get the FlatExtract and FlatMap paths by the SystemDescription API

systemDescription {
autosar4 {

flatExtract . ifPresent { theFlatExtract ->
// do something with the flatMap

}
}

}
// Or in property style
def theFlatExtractOpt = systemDescription . autosar4 . flatExtract
if(theFlatExtractOpt){

def theFlatExtract = theFlatExtractOpt .get ()
}

Listing 5.139: Get FlatExtract instance by the SystemDescription API

© 2025, Vector Informatik GmbH 117 of 387

Chapter 5. AutomationInterface API Reference

5.6.6 Transactions
Model changes must always be executed within a transaction. The automation API provides some
simple means to execute transactions.

For details about transactions read 6.1.7 on page 328.

scriptTask (" TaskName ", DV_PROJECT){
code {

transaction {
// Your transaction code here

}
}

}

Listing 5.140: Execute a transaction

scriptTask (" TaskName ", DV_PROJECT){
code {

transaction (" Transaction name") {
// The transactionName property is available inside a transaction
String name = transactionName

}
}

}

Listing 5.141: Execute a transaction with a name

import com. vector .cfg.model.uow. TransactionException
scriptTask (" TaskName ", DV_PROJECT){

code {
try {

transaction (" Transaction ") {
// Any exception occurs
throw new RuntimeException ()

}
} catch (TransactionException ex) {

assert ex. getMessage () == " Failed executing transaction 'Transaction '"
}

}
}

Listing 5.142: Handle a TransactionException

The transaction name has no additional semantic. It is only be used for logging and to improve
error messages.

Nested Transactions If you open a transaction inside a transaction the inner transaction is
ignored and it is as no transaction call was done. So be aware that nested transactions are no real
transaction, which leads to the fact the these nested transactions can not be undone.

If you want to know whether a transaction is already running, see the transactions API below.

5.6.6.1 Transactions API

The Transactions API with the keyword transactions provides access to running transactions or
the transaction history.

© 2025, Vector Informatik GmbH 118 of 387

Chapter 5. AutomationInterface API Reference

You can use method isTransactionRunning() to check if a transaction is currently running. The
method returns true, if a transaction is running in the current Thread.

scriptTask (" TaskName ", DV_PROJECT){
code {

// Switch to the transactions API
transactions {

// Check if a transaction is running
assert isTransactionRunning () == false

// Open a transaction
transaction {

// Now a transaction is running
assert isTransactionRunning () == true

}
}
// Or the short form
transactions . isTransactionRunning ()

}
}

Listing 5.143: Check if a transaction is running

TransactionHistory The transaction history API provides some methods to handle transaction
undo and redo. This way, complex model changes can be reverted quite easily.

• The undo() method executes an undo of the last transaction. If the last transaction frame
cannot be undone or if the undo stack is empty this method returns without any changes.

• The undoAll() method executes undo until the transaction stack is empty or an undoable
transaction frame appears on the stack.

• The redo() method executes an redo of the last undone transaction. If the last undone
transaction frame cannot be redone or if the redo stack is empty this method returns without
any changes.

• The canUndo() method returns true if the undo stack is not empty and the next undo
frame can be undone. This method changes nothing but you can call it to find out if the
next undo() call would actually undo something.

• The canRedo() method returns true if the redo stack is not empty and the next redo frame
can be redone. This method changes nothing but you can call it to find out if the next
redo() call would actually redo something.

• The clearUndoRedoHistory() method clears the undo/redo history. After this method was
called, all previous undo and redo information are lost and can not be restored.

• The setUndoHistoryLimit(int) method allows to limit the number of the undo history
stack size to the given value.

© 2025, Vector Informatik GmbH 119 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName ", DV_PROJECT){
code {

transaction (" TransactionName ") {
// Your transaction code here

}

transactions {
assert transactionHistory . canUndo ()

transactionHistory .undo ()

assert ! transactionHistory . canUndo ()
}

}
}

Listing 5.144: Undo a transaction with the transactionHistory

scriptTask (" TaskName ", DV_PROJECT){
code {

transaction (" TransactionName ") {
// Your transaction code here

}

transactions {
transactionHistory .undo ()

assert transactionHistory . canRedo ()

transactionHistory .redo ()

assert ! transactionHistory . canRedo ()
}

}
}

Listing 5.145: Redo a transaction with the transactionHistory

© 2025, Vector Informatik GmbH 120 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" TaskName ", DV_PROJECT){
code {

transaction (" Transaction1 ") {
// Your transaction code here

}

transaction (" Transaction2 ") {
// Your transaction code here

}

transactions {

assert transactionHistory . canUndo ()

transactionHistory .undo ()

assert transactionHistory . canRedo ()

assert transactionHistory . canUndo ()

transactionHistory . clearUndoRedoHistory ()

assert ! transactionHistory . canRedo ()

assert ! transactionHistory . canUndo ()
}

}
}

Listing 5.146: Clear the undo/redo history with the transactionHistory

scriptTask (" TaskName ", DV_PROJECT){
code {

transactions {
transactionHistory . setUndoHistoryLimit (1)

}

transaction (" Transaction1 ") {
// Your transaction code here

}

transaction (" Transaction2 ") {
// Your transaction code here

}

transactions {

assert transactionHistory . canUndo ()

transactionHistory .undo ()

assert ! transactionHistory . canUndo ()
}

}
}

Listing 5.147: Set the undo history limit with the transactionHistory

© 2025, Vector Informatik GmbH 121 of 387

Chapter 5. AutomationInterface API Reference

5.6.6.2 Operations

The model operations implement convenient means to execute complex model changes like AU-
TOSAR module activation or cloning complete model sub-trees. The operations API is available
inside of a transaction with the keyword operation. The class IOperations defines the available
methods.

• The method activateModuleConfiguration(DefRef) activates the specified module con-
figuration. This covers:

– Creation of the module including the reference in the ActiveEcuC (the ECUC-VALUE-
COLLECTION)

– Creation of mandatory containers and parameters (lower multiplicity > 0)

– Applying the recommended configuration

– Applying the pre-configuration values

Note: If the DefRef has a wildcard, activateModuleConfiguration(DefRef) tries to acti-
vate the most specific module definition matching the wildcard, if unique. If it is not unique
the method will throw an exception. For example the DefRef /[ANY]/Dio will activate the
/MICROSAR/Dio instead of /AUTOSAR/EcucDefs/Dio.
transaction {

// Activates the Dio module
operations . activateModuleConfiguration (sipDefRef .Dio)

}

Listing 5.148: Activation of the ModuleConfiguration Dio

• The method deactivateModuleConfiguration(MIModuleConfiguration) deletes the spec-
ified module configuration from the model. In case of a split configuration, the related per-
sistency location is being removed from the project settings. In XML file base configurations,
the related file is being deleted during the next project save if it doesn’t contain configuration
objects anymore.

If the module configuration is referenced from the active-ECUC this link is being removed
too.

• The method changeBswImplementation(MIModuleConfiguration, MIBswImplementation)
changes the BSW-implementation of a module configuration including the definition of all
contained containers and parameters.

• setConfigurationVariantOfAllModuleConfigurations(EEcucConfigurationVariant) sets
the implementation configuration variant of all active MIModuleConfiguration. If a module
configuration does not support the requested variant it is ignored.

Supported enum values are:

– EEcucConfigurationVariant

∗ VARIANT_PRE_COMPILE

∗ VARIANT_LINK_TIME

∗ VARIANT_POST_BUILD_LOADABLE

This is for post-build loadable only! See the method setConfigurationVariant() in class
IEcucModuleConfiguration for details.

© 2025, Vector Informatik GmbH 122 of 387

Chapter 5. AutomationInterface API Reference

• The deepClone(MIObject, MIObject) operation copies (clones) a complete MDF model
sub-tree and adds it as child below the specified parent.

– The source object must have a parent. The clone will be added to the same MDF
feature below the destination parent then

– AUTOSAR UUIDs will not be cloned. The clone will contain new UUIDs to guarantee
unambiguousness

• The method createModelObject(Class) creates a new element of the passed modelClass
(meta class). The modelObject must be added to the whole AUTOSAR model, before
finishing the transaction.

• The method createUniqueMappedAutosarPackage(AsrPath, Path, IVersion) can be used
to create new MIARPackages in new arxml files. It creates an new instance of the specified
AUTOSAR package and adds it to the model tree. All non-existing parent packages will be
created too.

The new package (including new created parent packages) will be mapped uniquely to the
specified location (Path and AUTOSAR version).

5.6.7 Model Synchronization
The Model synchronization provides operation to solve and synchronize common model related
items. The model synchronization API is available inside of an active project with the keyword mod-
elSynchronization. The class IModelSynchronizationApi defines the available methods.

The method synchronize() synchronizes the model for all registered model synchronization ele-
ments like validations and other operations. The method will open a transaction, if isSynchro-
nizationRequired() returns true, otherwise this method does nothing.

// Execute the model synchronization
modelSynchronization . synchronize ()

//Or more elaborated , but means the same
modelSynchronization {

if(synchronizationRequired){
synchronize ()

}
}

Listing 5.149: Model synchronization inside an open project

5.6.8 PreBuild and PostBuild Variance (Post-build selectable)
The variance access API is the entry point for convenient access to variant AUTOSAR model
content. It provides means to filter variant model content and access variant specific data.

The DaVinci Configurator supports two types of variance:

• PostBuild variance (Post-build selectable)

• PreBuild variance

For details about PostBuild variance and model views read 6.2 on page 330.

© 2025, Vector Informatik GmbH 123 of 387

Chapter 5. AutomationInterface API Reference

5.6.8.1 Investigate Project Variance

The projects variance can be analyzed using the variance keyword. These methods can be called
then:

• The method getCurrentlyActiveView() returns the currently active model view.

• The method variantView(String) returns the IPostBuildPredefinedVariantView with
the given name. This may be a PreBuild of PostBuild view.

scriptTask (" TaskName ", DV_PROJECT){
code{

// Activates the DoorLeftFront variant
variance . variantView (" DoorLeftFront "). activeWith {

// Now all MDF model accesses are executed in the variant "
DoorLeftFront "

}
}

}

Listing 5.150: Retrieve and use a variant view by name

scriptTask (" TaskName ", DV_PROJECT){
code{

def activeView1 = variance . currentlyActiveView
assert activeView1 instanceof IPostBuildInvariantValuesView

// ... or with a closure
variance {

def activeView2 = currentlyActiveView
assert activeView1 == activeView2
assert activeView1 == postBuildInvariantValuesView

// Get number of variants
int num = allPostBuildVariantViews .size ()
assert num == 4

}
}

}

Listing 5.151: The default view is the IPostBuildInvariantValuesView

Investigate Project Variance - PostBuild

• The method hasPostBuildVariance() returns true if the active project contains post-build
variants.

• The method getPostBuildInvariantValuesView() returns the PostBuild invariant values
view. This view contains objects which are not variant (Object or parent have no Variation-
Point) or the values in all variants are equal.

• The method getPostBuildInvariantEcucDefView() returns the PostBuild invariant Ecuc
definition view. This view contains the same objects as the invariant values view but excludes
all objects which, by (EcuC / BSWMD) definition, support variance. Using this view you can
avoid dealing with objects which are accidentally equal by value (in your test configurations)
but potentially can be different because they support variance.

• The method getAllPostBuildVariantViews() returns the model views of all PostBuild
predefined variants defined in the evaluated variant set. It never returns null. If the project

© 2025, Vector Informatik GmbH 124 of 387

Chapter 5. AutomationInterface API Reference

contains no PostBuild variants, the result will be an empty list.

The order of variant views returned is deterministic. It is the natural order of the names of
the variants defined in the evaluated variant set.

• The method getAllPostBuildVariantViewsOrInvariant() returns the same as the method
getAllPostBuildVariantViews() if the project contains PostBuild variants. If the project
contains no PostBuld variants (see hasPostBuildVariance()) the method returns a list
containing only the IPostBuildInvariantValuesView.

This helps to create code working with both variant and non-variant projects.

5.6.8.2 Variant Model Objects

The following model object extensions provide convenient means to investigate model object vari-
ance in detail.

• The method IModelView.activeWith(Supplier) executes code under visibility of the spec-
ified model view.

• The method MIObject.isModelInvariant() returns true if the object and all its parents
has no variation point conditions. If this is true, this model object instance is visible in all
variant view.

• The method MIObject.isVisible() returns true if the object is visible in the current model
view.

• The method MIObject.isVisibleInModelView(IModelView) returns true if the object is
visible in the specified model view.

• The method MIObject.asViewedModelObject() returns a new IViewedModelObject in-
stance using the currently active view.

• The method MIObject.getPostBuildVariantSiblings() returns MDF object instances
representing the same object but in all variants.

For details about the sibling semantic see 6.2.1.3 on page 332.

• The method getPostBuildVariantSiblingsWithoutMyself(MIObject) returns the same
collection as getPostBuildVariantSiblings(MIObject) but without the specified object.

// IPostBuildPredefinedVariantView viewDoorLeftFront = ...
// MIParameterValue variantParameter = ...

viewDoorLeftFront . activeWith {
assert variance . currentlyActiveView == viewDoorLeftFront

// The parameter instance is not visible in all variants ...
assert ! variantParameter . isModelInvariant ()

// ... but all variants have a sibling with the same value
assert variantParameter . isPostBuildValueInvariant ()

}

Listing 5.152: Execute code in a model view

Variant Model Objects - PostBuild

© 2025, Vector Informatik GmbH 125 of 387

Chapter 5. AutomationInterface API Reference

• The method MIObject.isPostBuildValueInvariant() returns true if the object has the
same value in all PostBuild variants.

See IPostBuildInvariantValuesView for more details to the concept.

Attention: This must also return true for elements in other variants as the first PostBuild
Predefined Variant, when the element is invariant! This is not the same result as IPost-
BuildInvariantValuesView isVisible() method returns.

For details about invariant views see 6.2.1.4 on page 333.

• The method MIObject.isPostBuildEcucDefInvariant() returns true if the object is in-
variant according to its EcuC definition.

See IPostBuildInvariantEcucDefView for more details to the concept.

Attention: This must also return true for elements in other variants as the first PostBuild
Predefined Variant, when the element is invariant! This is not the same result as IPost-
BuildInvariantValuesView isVisible() method returns.

• The method MIObject.isNeverPostBuildVisible() returns true, if the object is invisible
in all variant view.

• The method MIObject.getVisiblePostBuildVariantViews(MIObject) returns all variant
views the specified object is visible in.

• The method MIObject.getVisiblePostBuildVariantViews(MIObject) returns all variant
views the specified object is visible in.

© 2025, Vector Informatik GmbH 126 of 387

Chapter 5. AutomationInterface API Reference

5.6.9 Additional Model API
5.6.9.1 User Annotations

In DaVinci Configurator the user can add AUTOSAR annotations to configuration elements. You
can create, modify, read and delete these annotations like in the UI editors.

All sub types of MIHasAnnotation elements support annotations like:

• MIModuleConfigurations

• MIContainers

• MIParameterValues

• MIIdentifiables

Although annotations are stored in the data model, their changeable state is independent of the
configuration element changeable state. Annotations can be added/changed/deleted on every
existing configuration element with valid definition, except the project was opened in read-only
mode.

The IUserAnnotation interface provide methods like:

• getLabel() - Returns the label of the annotation, like getName() of a container

• setLabel(String) ()} - Changes the label

• getText() - Returns the text of the annotation.

• setText(String) ()} - Changes the text

• isChangeable() - Returns true, if the annotation is changeable

• delete() - Deletes the annotation

Access User Annotations The getUserAnnotations(MIHasAnnotation) method returns the
IUserAnnotations for the model element. The returned list provides additional methods defined
in IUserAnnotationList.
// We already have the container "cont" or any other model element
def myContainer = cont

def annos = myContainer . userAnnotations // Retrieve the list of annotations
def anno = annos . byLabel (" MyLabel ") // Select the annotation with " MyLabel "
def text = anno.text // Get the Text

// Or short
text = myContainer . userAnnotations [" MyLabel "]. text

Listing 5.153: Get a UserAnnotation of a container

Creation and Modification of User Annotations You can create new User Annotations with the
methods:

• createAndAdd(label)

• byLabelOrCreate(label)

© 2025, Vector Informatik GmbH 127 of 387

Chapter 5. AutomationInterface API Reference

transaction {
// We already have the container "cont"
def anno = cont. userAnnotations . createAndAdd (" MyAnno ")
anno.text = "My Text"

}

Listing 5.154: Create a new UserAnnotation

transaction {
// We already have the container "cont"
def anno = cont. userAnnotations . byLabelOrCreate (" MyAnno ")
anno.text = "My Text"

}

Listing 5.155: Create or get the existing UserAnnotation by label name

Notes The IUserAnnotationList is updated, when the underlying model changes.

The IUserAnnotationList is read only list and does not permit any modify operations defined in
java.util.List, but certain operations like createAndAdd(String) will affect the list content.
If you delete a contained IUserAnnotation the list will not be updated.

5.7 Generation
The Automation Interface provides generation API for different generation use cases:

• Normal code generation, see 5.7.1

– Including external generation steps

• SWC Templates and Contract Phase Headers generation, see 5.7.3 on page 136

5.7.1 Code Generation
The block generation encapsulates all settings and commands which are related to code generation
of BSW modules:

The basic structure is the following:

generation {
settings {

// Settings like the selection of generators for execution are done here
externalGenerationSteps {

// Settings related to externalGenerationSteps can be done here
}

}
// The execution of the generation or validation can be started here

}

Listing 5.156: Basic structure

5.7.1.1 Generation Settings

The class IGenerationSettingsApi encapsulates all settings which belong to a generation process.
E.g.

© 2025, Vector Informatik GmbH 128 of 387

Chapter 5. AutomationInterface API Reference

• Select the generators to execute

• Select the target type (Real, VTT)

• Select the external generation steps

• If the module supports multiple module configurations, select the configurations which shall
be generated

The following chapters show samples for the standard use cases.

Generation with default Project Settings The following snippet executes a validation with the
default project settings.

scriptTask (" validate_with_default_settings "){
code{

generation {
validate ()

}
}

}

Listing 5.157: Validate with default project settings

To execute a generation with the standard project settings the following snippet can be used. The
validation is executed implicitly before the generation because of AUTOSAR requirements.

scriptTask (" generate_with_default_settings "){
code{

generation {
generate ()

}
}

}

Listing 5.158: Generate with standard project settings

Generation with Report IGenerationReportApi is the entry point for generation report settings.
When the settings are set and generation has been finished, the report output path can be seen in
the logs. The report has been generated in the project logs folder.

The following snippet sets the report settings and executes a generation.

© 2025, Vector Informatik GmbH 129 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" generate_components_with_report "){
code{

generation {
settings {

selectGeneratorsByDefRef ("/ MICROSAR /Aaa")
selectGeneratorsByDefRef ("/ MICROSAR /Hhh")

// Open the report closure to get access to the report settings
report {

// If no settings set , the configurator settings get used
createHtmlReport true

}
}

// After generation the output paths can be found in the console view
generate ()

}
}

}

Listing 5.159: Generation of components with a result report

createHtmlReport If not set, project settings will be used.
setCreateHtmlReport(Boolean) defines if HTML report should be generated.

Generation of one Module This sample selects one specific module and starts the generation.
There are two ways to open a settings block:

• settings

– This keyword creates empty settings. E.g. no module is selected for execution.

scriptTask (" generate_one_module "){
code{

generation {
settings { // uses an empty settings block

selectGeneratorsByDefRef ("/ MICROSAR /Aaa")
}
generate ()

}
}

}

Listing 5.160: Generate one module

• settingsFromProject

– Instead of using an empty generator selection, this keyword takes the generator selec-
tion from the project settings as template. This selection can optionally be refined by
explicit selections. The generator project settings contain the latest generator selection
of the generation dialog, that have been saved. Please note that the Target Type (VT-
T/REAL) is not saved and needs to be specified explicitly. The selection of a Target
Type does not directly select or deselect generators within one settingsFromProject clo-
sure. So the API getSelectedGenerators() returns all selected generators, but this list
may be further filtered according to the Target Type, before the generation is executed.

© 2025, Vector Informatik GmbH 130 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" generate_one_module "){
code{

generation {
settingsFromProject { // loads the generator selection from project

settings
// further generators can be selected or deselected in here

}
generate ()

}
}

}

Listing 5.161: Generate modules from project settings

Instead of selecting the generator directly by its DefRef, there is also the possibility to fetch the
generator object and select this object for execution.

scriptTask (" generate_one_module "){
code{

generation {
settings {
// To take the project settings as template use
// settingsFromProject {

def gens = generatorByDefRef ("/ MICROSAR /Aaa")
selectGenerators (gens)

}
generate ()

}
}

}

Listing 5.162: Generate one module

Generation of multiple Modules To select more than one generator the following snippet can be
used.
scriptTask (" generate_two_modules "){

code{
generation {

settings {
selectGeneratorsByDefRef ("/ MICROSAR /Aaa", "/ MICROSAR /Bbb")

}
generate ()

}
}

}

Listing 5.163: Generate two modules

Generation of Multi Instance Modules Some module definitions have a upper multiplicity
greater than one. (E.g. [0:5] or [0:*]) This means it is allowed to create more than one mod-
ule configuration from this module definition. If the related generator is started with the default
API, all available module configurations are selected for generation. The following API can be
used to generate only a subset of all related module configurations.

© 2025, Vector Informatik GmbH 131 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" generate_one_module_with_two_configs "){
code{

generation {
settings {

def gen = generatorByDefRef ("/ MICROSAR / MultiInstModule ")
// clear default selection
gen. deselectAllModuleInstances ()
// Select the module configurations to generate
gen. selectModuleInstance (AsrPath . create ("/ ActiveEcuC /

MultiInstModule1 "))

// Instead of the full qualified path , the module configuration
short name can also be used

gen. selectModuleInstance (" MultiInstModule2 ")
}
generate ()

}
}

}

Listing 5.164: Generate one module with two configurations

5.7.1.2 Generation of Generation Steps

Besides the internal generators, which are covered by the topics above, there are also generation
steps which can be executed with the following API. A new block externalGenerationSteps
within the settings block encapsulates all settings related to external generation scripts.

scriptTask (" generate_ext_gen_step "){
code{

generation {
settings {

externalGenerationSteps {
// To take the project settings as template use
// externalGenerationStepsFromProject {}

selectStep (" ExtGen1 ")
selectStep (" ExtGen2 ")

}
}
generate ()

}
}

}

Listing 5.165: Execute an external generation step

Retrieval of TargetType (REAL, VTT) of Generation Steps You can query the EEnvironment-
TargetType of the generation step. This will give you the information if the step can be executed
in REAL, VTT or both modes.

© 2025, Vector Informatik GmbH 132 of 387

Chapter 5. AutomationInterface API Reference

generation . settings . externalGenerationSteps {
def step = stepByName (" ExtGen1 ")
def targetType = step. generationStep . targetType

if(targetType . isRealAvailable ()){
// Real use case

}else if(targetType . isVttAvailable ()){
// VTT use case

}else{
// None selected

}
}

Listing 5.166: Retrieval of the TargetType of a Generation Step

Set a user defined logger It is possible to pass a specific logger to the generation settings. So all
generation events (Phase startet, Module started...) are additionally logged to this logger.

generation {
settings {

setUserLogger (userLogger)
}
generate ()

}

Listing 5.167: Set a user defined logger

5.7.1.3 Evaluate generation or validation results

Each validation and generation process has an overall result which states if the execution has been
successfully or not. Additionally to the overall state, the state of one specific generator can also
be of interest. To provide a possibility to access this information all methods for validate and
generate return an IGenerationResultModel.

scriptTask (" generate_with_default_settings "){
code{

generation {
def result = generate ()
scriptLogger .info " Overall result : " + result . result
scriptLogger .info " Duration : " + result . formattedDuration

// Access results of each generator or generation step
result . generationResultRoot . allGeneratorAndStepElements .each {

scriptLogger .info " Generator name : " + it.name
scriptLogger .info " Result : " + it. currentState

}

}
}

}

Listing 5.168: Evaluate the generation result

© 2025, Vector Informatik GmbH 133 of 387

Chapter 5. AutomationInterface API Reference

5.7.2 Generation Task Types
There are three types of IScriptTaskType for the generation process:

• Generation Step: DV_GENERATION_STEP

• Generation Process Start: DV_ON_GENERATION_START

• Generation Process End: DV_ON_GENERATION_END

The general description of the type is in chapter 5.3.1.4 on page 35. The following code samples
show the usage of these task types:

Generation Step A sample for the DV_GENERATION_STEP type:

scriptTask (" GenStepTask ", DV_GENERATION_STEP){
taskDescription "Task is executed as Generation Step"

def myArg = newUserDefinedArgument (
" myArgument ",
String ,
" Defines a user argument for the GenerationStep ")

code{ phase , generationType , resultSink ->

def myArgVal = myArg.value
// The value myArgVal was passed from the generation step in the project

settings editor

scriptLogger .info "MyArg is: $myArgVal "
scriptLogger .info " GenerationType is: $generationType "

if(phase. calculation){
// Execute code before / after calculation

transaction {
// Modify the Model in the calculation phase

}
}

if(phase. validation){
// Execute code before / after validation

}

if(phase. generation){
// Execute code before / after generation

}
}

}

Listing 5.169: Use a script task as generation step during generation

The Generation Step can also report validation results into the passed resultSink. See chapter
5.8.5.11 on page 149 for a sample how to create an validation-result and report it.

The generationType defines if the current generation is for the REAL or VTT platform.

Generation Process Start A sample for the DV_ON_GENERATION_START type:

© 2025, Vector Informatik GmbH 134 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" GenStartTask ", DV_ON_GENERATION_START){
taskDescription "The task is automatically executed at generation start"

code{ phasesToExecute , generators ->

scriptLogger .info " Phases are: $phasesToExecute "
scriptLogger .info " Generators to execute are: $generators "

// Execute code before the generation will start
}

}

Listing 5.170: Hook into the GenerationProcess at the start with script task

Generation Process End A sample for the DV_ON_GENERATION_END type:

scriptTask (" GenEndTask ", DV_ON_GENERATION_END){
taskDescription "The task is automatically executed at generation end"

code{ generationResult , generators ->

scriptLogger .info " Process result was: $generationResult "
scriptLogger .info " Executed Generators : $generators "

// Execute code after the generation process was finished
}

}

Listing 5.171: Hook into the GenerationProcess at the end with script task

© 2025, Vector Informatik GmbH 135 of 387

Chapter 5. AutomationInterface API Reference

5.7.3 Software Component Templates and Contract Phase Headers Generation
The Software Component Templates and Contract Phase Headers (Swct) generation automation
API provides access to configure and start the Swct generation.

The block generation.swct encapsulates all settings and commands which are related to this use
case.

The basic structure is the following:

generation .swct {
settings {

// Settings like the selection of components to generate
}
// The execution of the generation can be started here
generate ()

}

Listing 5.172: Basic Swct structure

5.7.3.1 Swct Generation Settings

The class IGenerationSwctSettingsApi encapsulates all settings which belong to a Swct gener-
ation process.
Examples:

• Select the software components to execute

• Retrieve the available software components

The following chapters show samples for the standard use cases.

5.7.3.2 Generation with default Project Settings

To execute the Swct generation with the standard project settings the following snippet can be
used:
scriptTask (" generate_with_default_settings "){

code{
generation .swct{

generate ()
}

}
}

Listing 5.173: SWC Templates and Contract Headers generation with standard project settings

5.7.3.3 Generation of all Software Components

To execute the Swct generation for all available software components the following snippet can be
used:

© 2025, Vector Informatik GmbH 136 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" generate_with_default_settings "){
code{

generation .swct{
settings . selectAll ()
generate ()

}
}

}

Listing 5.174: SWC Templates and Contract Headers generation of all components

5.7.3.4 Generation of one Software Component

This sample selects one specific software component and starts the generation. There are two ways
to open an settings block:

• settings

– This keyword creates empty settings. E.g. no component is selected for execution.

• settingsFromProject

– This keyword takes the project settings as template. E.g. component from the project
settings are initially activated and can optionally be refined by explicit selections.

scriptTask (" generate_one_component "){
code{

generation .swct{
settings {

selectSoftwareComponent (" MyApplType ")
}

generate ()
}

}
}

Listing 5.175: SWC Templates and Contract Headers generation of one selected component

Instead of selecting the software component directly by its Name, there is also the possibility to
fetch the software component object and select() this object for execution.

scriptTask (" generate_one_component "){ code{
generation .swct{

settings {
def sw = softwareComponentByName (" MyApplType ")
// Select the software component
sw. select ()

// You could also retrieve information about the component
def asrPath = sw. asrPath
if(sw. selected){ /* Do something */ }

}
generate ()

}
}}

Listing 5.176: Swct generation get component and select component

© 2025, Vector Informatik GmbH 137 of 387

Chapter 5. AutomationInterface API Reference

5.7.3.5 Generation of multiple Software Components

To select more than one Software Component the following snippet can be used.

scriptTask (" generate_one_component "){
code{

generation .swct{
settings {

// Select the tow software components
selectSoftwareComponent (" MyApplType "," MySecondApplType ")

}

generate ()
}

}
}

Listing 5.177: Swct generation of multiple components

5.7.3.6 Set a user defined logger

It is possible to pass a specific logger to the Swct generation settings. So all generation events
(Phase startet, Module started...) are additionally logged to this logger.

generation .swct{
settings {

setUserLogger (userLogger)
}
generate ()

}

Listing 5.178: Set a user defined logger

5.7.3.7 Evaluate generation results

The same API is used as for the normal generation, see chapter 5.7.1.3 on page 133 for details.

© 2025, Vector Informatik GmbH 138 of 387

Chapter 5. AutomationInterface API Reference

5.8 Validation
5.8.1 Introduction
All examples in this chapter are based on the scenario shown below. The module and the validators
are not from the real MICROSAR stack, but just for the examples.

As shown in the 5.8, there is a module Tp that has 3 Buffer containers and each Buffer has a
Size parameter with value=3. There is also a validator that requires the Size parameter to be a
multiple of 4. For each Size parameter that violates this constraint, a validation-result with ID
TP00012 is created, as shown in the 5.8.

Such a validation-result has 2 solving-actions. One that sets the Size to the next smaller valid
value, and one that sets the Size to the next bigger valid value. The later solving-action is marked
as preferred-solving-action.
There is also a TP00011 result that stands for any other result. The examples will not touch
it.

Figure 5.8: example module

Figure 5.9: example validation results

Remark:

The validation-results to solve are identified via their ID. This ID is case-sensitive. Validation-
Result-IDs of MICROSAR BSW modules are usually in capital letters (e.g. COM02325). Other
validation-results may use validation-IDs in camel-case style (e.g. Cfg00022).

© 2025, Vector Informatik GmbH 139 of 387

Chapter 5. AutomationInterface API Reference

5.8.2 Access Validation-Results
A validation{} block gives access to the validation API of the consistency component. That
means accessing the validation-results that are existing in the consistency, and solving them by
executing solving-actions which belong to each individual result.

validationResults in AutomationIf waits for background-validation-idle and returns all validation-
results of any kind. The returned collection has no deterministic order

scriptTask (" CheckValidationResults_filterByOriginId ", DV_PROJECT){
code{

validation {
// access all validation - results
def allResults = validationResults
assert allResults .size () > 3

// filter based on methods of IValidationResultUI e.g. isId ()
def tp12Results = validationResults . filter {it.isId("TP", 12)}
assert tp12Results .size () == 3

}

// alternative access to validation - results without a validation block
assert validation . validationResults .size () > 3

}
}

Listing 5.179: Access all validation-results and filter them by ID

5.8.3 Model Transaction and Validation-Result Invalidation
Before we continue in this chapter with solving validation-results, the following information is
import to know:

Relation to model transactions:

Solving validation-results with solving-actions always creates a transaction implicitly. An Ille-
galStateException will be thrown if this is done within an explicitly opened transaction.

Invalidation of validation-results:

Any model modification may invalidate any validation-result. In that case, the responsible val-
idator creates a new validation-result if the inconsistency still exists. Whether this happens for
a particular modification/validation-result depends on the validator implementation and is not
visible to the user/client.

Trying to solve an invalidated validation-result will throw an IllegalStateException. Therefore
it is not safe to solve a particular ISolvingActionUI that was fetched before the last transaction.
Instead, please fetch a solving-action after the last transaction, or use the method ISolver.solve(Closure)
which is the most preferred way of solving validation-results with solving-actions.

See chapter 5.8.4.1 on the following page for details.

5.8.4 Solve Validation-Results with Solving-Actions
A single validation-result can be solved by calling solve() on one of its solving-actions.

© 2025, Vector Informatik GmbH 140 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" SolveSingleResultWithSolvingAction ", DV_PROJECT){
code{

validation {
def tp12Results = validationResults . filter {it.isId("TP", 12)}
assert tp12Results .size () == 3

// Take first (any) validation - result and filter its solving - actions
based on methods of ISolvingActionUI

tp12Results .first. solvingActions . filter {
it. description . contains ("next bigger valid value")

}. single .solve () // reduce the collection to a single ISolvingActionUI
and call solve ()

assert validationResults . filter {it.isId("TP", 12) }. size () == 2
// One TP12 validation - result solved

}
}

}

Listing 5.180: Solve a single validation-result with a particular solving-action

5.8.4.1 Solver API

getSolver() gives access to the ISolver API, which has advanced methods for bulk solutions.

ISolver.solve(Action) allows to solve multiple validation-results within one transaction.
You should always use this method to solve multiple validation-results at once instead of calling
ISolvingActionUI.solve() in a loop. This is very important, because solving one validation-
result, may cause invalidation of another one. And calling ISolvingActionUI.solve() of an
invalidated validation-result throws an IllegalStateException. Also, invalidated validation-
results may get recalculated and you would miss the recalculated validation-results with the loop
approach. But with ISolver.solve(Action) you can solve invalidated->recalculated results as
well as results which didn’t exist at the time of the call (but have been caused by solving some
other validation-result).

ISolver.solve(Action) first waits for background-validation-idle in order to have reproducible
results.

The closure may contain multiple statements like:

result { specify result predicate }. withAction { select solving action }

All statements together will be used as a mapper from any solvable validation-result to a particular
solving-action. The order of these statements does not affect the solving action execution order.
The statement order might only be relevant if multiple statements match on a particular result,
but would select a different solving-action. In that case, the first statement that successfully selects
a solving-action wins.

© 2025, Vector Informatik GmbH 141 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" SolveMultipleResults ", DV_PROJECT){
code{

validation {
assert validationResults .size () == 4
solver .solve{

// Call result () and pass a closure that works as filter
// based on methods of IValidationResultUI .
result {

isId("TP", 12)
}
// On the return value , call withAction () and pass a closure that
// selects a solving - action based on methods
// of IValidationResultForSolvingActionSelect
. withAction {

containsString ("next bigger valid value")
}

// multiple result () calls can be placed in one solve () call.
result {isId("COM", 34) }. withAction { containsString (" recalculate ")}

}

// Three TP12 and zero COM34 (didn 't exist) results solved . One other left
assert validationResults .size () == 1

}}}

Listing 5.181: Fast solve multiple results within one transaction

Solve all PreferredSolvingActions ISolver.solveAllWithPreferredSolvingAction() solves
all validation-results with their preferred solving-action (solving-action return by IValidation-
ResultUI.getPreferredSolvingAction()). Validation-results without a preferred solving-action
are skipped.

This method first waits for background-validation-idle in order to have reproducible results.

scriptTask (" SolveAllWithPreferred ", DV_PROJECT){
code{

validation {
assert validationResults .size () == 4

solver . solveAllWithPreferredSolvingAction ()

assert validationResults .size () == 1

// this would do the same
transactions . transactionHistory .undo ()
assert validationResults .size () == 4

solver .solve{
result {true }. withAction { preferred }

}

assert validationResults .size () == 1
}}}

Listing 5.182: Solve all validation-results with its preferred solving-action (if available)

© 2025, Vector Informatik GmbH 142 of 387

Chapter 5. AutomationInterface API Reference

5.8.5 Advanced Topics
5.8.5.1 Erroneous CEs of a Validation-Result

To check if a certain model element is affected by the result please use the following methods:

• IValidationResultUI.matchErroneousCE(MIObject)

• IValidationResultUI.matchErroneousCE(IHasModelObject)

• IValidationResultUI.matchErroneousCE(MIHasDefinition, DefRef)

scriptTask (" IValidationResultUIErroneousCEs ", DV_PROJECT){
code{

validation {
// sampleDefRefs contains DefRef constants just for this example .

Please use the real DefRefs from your SIP

def result = validationResults . filter {it.isId("TP", 12) }. first

// Retrieve the model element to check
def modelElement // = retrieveElement ...

// Check if the model object is affected by the validation - result
assert result . matchErroneousCE (modelElement)

}
}

}

Listing 5.183: CE is affected by (matches) an IValidationResultUI

5.8.5.2 Access Validation-Results of a Model Object

You can retrieve validation-results also from any model object (MDF, Domain or BswmdModel).

MIObject.validationResults returns the validation-results of an MIObject.

scriptTask (" CheckValidationResultsOfObject ", DV_PROJECT){
code{

// sampleDefRefs contains DefRef constants just for this example . Please
use the real DefRefs from your SIP

// a Buffer container
def buffer002 = mdfModel (AsrPath . create ("/ ActiveEcuC /Tp/ Buffer_002 "))
// the Size parameter
def sizeParam = buffer002 . parameter (sampleDefRefs . tpBufferSizeDefRef).

single

// the result exists for the Size parameter , not for the Buffer container
assert sizeParam . validationResults .size () == 1
assert buffer002 . validationResults .size () == 0

}
}

Listing 5.184: Access all validation-results of a particular object

MIObject.validationResultsRecursive returns the validation-results of an MIObject and all its
children.

© 2025, Vector Informatik GmbH 143 of 387

Chapter 5. AutomationInterface API Reference

IViewedModelObject.validationResults returns the validation-results for the element matching
the model object and model view.

The following condition must be true to match:

IValidationResultUI.matchErroneousCE(theObject) &&
(

IValidationResultUI.isGeneralVariantContext() ||
IValidationResultUI.getPredefinedVariantContexts().contains(theView)

)

IViewedModelObject.validationResultsRecursive returns the validation-results of an MIOb-
ject and all its children. This will also filter for the correct com.vector.cfg.model.asr.view.IModelView.
So this will return all results of the whole subtree, like an editor displays results at parent ob-
jects.

5.8.5.3 Access Validation-Results of a DefRef

DefRef.validationResults returns all validation-results which match the given definition. This
means for each validation-result that is returned, at least one of its configuration elements has the
given definition.

scriptTask (" CheckValidationResultsOfDefRef ", DV_PROJECT){
code{

// sampleDefRefs contains DefRef constants just for this example . Please
use the real DefRefs from your SIP

assert sampleDefRefs . tpBufferSizeDefRef . validationResults .size () == 3
}

}

Listing 5.185: Access all validation-results of a particular DefRef

5.8.5.4 Filter Validation-Results using an ID Constant

Groovy allows you to spread list elements as method arguments using the spread operator. This
allows you to define constants for the isId(String,int) method.

scriptTask (" FilterResultsUsingAnIdConstant2 ", DV_PROJECT){
code{

validation {
def tp12Const = ["TP" ,12]

assert validationResults .size () > 3
assert validationResults . filter {it.isId (* tp12Const)}. size () == 3

}
}

}

Listing 5.186: Filter validation-results using an ID constant

5.8.5.5 Identification of a Particular Solving-Action

A so called solving-action-group-ID identifies a solving-action group globally unique.

© 2025, Vector Informatik GmbH 144 of 387

Chapter 5. AutomationInterface API Reference

If solving-action groups are used, it is much safer to use the solving-action-group-IDs for solving-
action identification than description-text matching, because a description-text may change.

final String SA_GROUP_ID_TP12_NEXT_BIGGER_VALID_VALUE = " ESolvingActionGroup #2"

scriptTask (" SolveMultipleResultsByGroupId ", DV_PROJECT){
code{

validation {
assert validationResults .size () == 4

solver .solve{
result {isId("TP", 12)}

. withAction {
byGroupId (SA_GROUP_ID_TP12_NEXT_BIGGER_VALID_VALUE)

}
// instead of . withAction { containsString (" next bigger valid value ")}

}

assert validationResults .size () == 1
// Three TP12 validation - results solved .

}
}

}

Listing 5.187: Fast solve multiple validation-results within one transaction using a solving-action-
group-ID

5.8.5.6 Validation-Result Description as MixedText

IValidationResultUI.getDescription() returns an IMixedText that describes the inconsis-
tency.

IMixedText is a construct that represents a text, whereby parts of that text can also hold the
object which they represent. This allows a consumer e.g. a GUI to make the object-parts of the
text clickable and to reformat these object-parts as wanted.
Consumers which don’t need these advanced features can just call IMixedText.toString() which
returns a default format of the text.

5.8.5.7 Further IValidationResultUI Methods

The following listing gives an overview of other "properties" of an IValidatonResultUI.

© 2025, Vector Informatik GmbH 145 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" IValidationResultUIApiOverview ", DV_PROJECT){
code{

validation {
def r = validationResults . filter {it.isId("TP", 12) }. first
assert r.id. origin == "TP"
assert r.id.id == 12
assert r. description . toString (). contains ("must be a multiple of")
assert r. severity == EValidationSeverityType .ERROR
assert r. solvingActions .size () == 2
assert r. getSolvingActionByGroupId (" ESolvingActionGroup #2"). description .

contains ("next bigger valid value")

// this result has a preferred -solving - action
assert r. preferredSolvingAction == r. getSolvingActionByGroupId ("

ESolvingActionGroup #2")

// results with lower severity than ERROR can be acknowledged
assert r. acknowledgement . isPresent () == false

// if the cause was an exception , r.cause.get () returns it
assert r.cause. isPresent () == false

// an ERROR result gets reduced to WARNING if one of its erroneous CEs is
user - defined (user - overridden)

assert r. isReducedSeverity () == false

// on - demand results are reported with the on - demand generator validation
assert r. isOnDemandResult () == false

}
}

}

Listing 5.188: IValidationResultUI overview

5.8.5.8 IValidationResultUI Acknowledgement

An IValidatonResultUI can have an acknowledgement and this acknowledgement will be stored
within the project. The acknowledgement can be read and edited with the following APIs:

• boolean isAcknowledged()

• Optional<String> getAcknowledgement()

• void setAcknowledgement(String)

However, the acknowledgement can only be edited if the relevant files are writable. This informa-
tion is stored in project settings.

The following API can be used to check if the acknowledgement is read-only:

• boolean isAcknowledgementReadOnly()

Note: When the setAcknowledgement(String) method is called, it will internally open a trans-
action to persist the acknowledgement. It is not allowed to call this method inside another trans-
action, otherwise, an IllegalStateException exception will be thrown from the setAcknowledge-
ment(String) method.

© 2025, Vector Informatik GmbH 146 of 387

Chapter 5. AutomationInterface API Reference

5.8.5.9 IValidationResultUI in a variant (Post-Build selectable) Project

scriptTask (" IValidationResultUIInAVariantProject ", DV_PROJECT){
code{

validation {
def r = validationResults . filter {it.isId("TP", 12) }. first
assert r. isGeneralVariantContext () // either it is a general result ...
assert r. predefinedVariantContexts .size () == 0 // or it is assigned to

one or more (but never all) variants
// If a validator assigns a result to all variants , it will be a

general result at UI -side.
}

}
}

Listing 5.189: IValidationResultUI in a variant (post build selectable) project

Advanced Descriptor Details An IDescriptor is a construct that can be used to "point to"
some location in the model. A descriptor can have several kinds of aspects to describe where
it points to. Aspect kinds are e.g. IMdfObjectAspect, IDefRefAspect, IMdfMetaClassAspect,
IMdfFeatureAspect.

getAspect(Class) gets a particular aspect if available, otherwise null.

A descriptor has a parent descriptor. This allows to describe a hierarchy.
E.g. if you want to express that something with definition X is missing as a child of the existing
MDF object Y. In this example you have a descriptor with an IDefRefAspect containing the
definition X. This descriptor that has a parent descriptor with an IMdfObjectAspect containing
the object Y.

The term descriptor refers to a descriptor together with its parent-descriptor hierarchy.

© 2025, Vector Informatik GmbH 147 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.model. cedescriptor . aspect .*

scriptTask (" IValidationResultUIErroneousCEs ", DV_PROJECT){
code{

validation {
// sampleDefRefs contains DefRef constants just for this example .

Please use the real DefRefs from your SIP

def result = validationResults . filter {it.isId("TP", 12) }. first
def descriptor = result . erroneousCEs . single // this result in this

example has only a single erroneous -CE descriptor
def defRefAspect = descriptor . getAspect (IDefRefAspect .class)
assert defRefAspect != null // this descriptor in this example has an

IDefRefAspect
assert defRefAspect . defRef == sampleDefRefs . tpBufferSizeDefRef
def objectAspect = descriptor . getAspect (IMdfObjectAspect .class)
assert objectAspect != null // // this descriptor in this example has

an IMdfObjectAspect
// An IMdfObjectAspect would be unavailable for a descriptor

describing that something is missing
def parentObjectAspect = descriptor . parent . getAspect (IMdfObjectAspect .

class)
assert parentObjectAspect != null

// Dealing with descriptors is universal , but needs more code. Using
these methods might fit your needs.

assert result . matchErroneousCE (objectAspect . getObject ())
assert result . matchErroneousCE (parentObjectAspect . getObject (),

sampleDefRefs . tpBufferSizeDefRef)
}

}
}

Listing 5.190: Advanced use case - Retrieve Erroneous CEs with descriptors of an
IValidationResultUI

5.8.5.10 Examine Solving-Action Execution

The easiest and most reliable option for verifying solving-action execution is to check the presence
of validation-results afterwards.

Apart from that, there are other options of examination:

ISolvingActionUI.solve() returns an ISolvingActionExecutionResult. An ISolvingAc-
tionExecutionResult represents the result of one solving action execution. Use isOk() to find
out if it was successful. Call getUserMessage() to get the failure reason.

ISolver.solve(Action) returns an ISolvingActionSummaryResult. An ISolvingActionSum-
maryResult represents the execution of multiple results. ISolvingActionSummaryResult.isOk()
returns true if getExecutionResult() is EExecutionResult.SUCCESSFUL or EExecutionResult.WARNING,
this is if at least one sub-result was ok.

Call getSubResults() to get a list of ISolvingActionExecutionResults.

© 2025, Vector Informatik GmbH 148 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.util. activity . execresult . EExecutionResult

scriptTask (" SolvingReturnValue ", DV_PROJECT){
code{

validation {
assert validationResults .size () == 4
// In this example , three validation - results have a preferred solving

action .
// One of the three cannot be solved because a parameter is user -

defined .
def summaryResult = solver . solveAllWithPreferredSolvingAction ()
assert validationResults .size () == 2 // Two have been solved , one with

a preferred solving - action is left.
assert summaryResult . executionResult == EExecutionResult . WARNING

// DemoAsserts is just for this example to show what kind of sub -
results the summaryResult contains .

DemoAsserts . summaryResultContainsASubResultWith ("OK",summaryResult)
// two such sub - results for the validation - results with preferred -

solving - action that could be solved

DemoAsserts . summaryResultContainsASubResultWith ([" invalid modification "
,"not changeable "," Reason ","is user - defined "], summaryResult)

// such a sub - result for the failed preferred solving action due to the
user - defined parameter

DemoAsserts . summaryResultContainsASubResultWith (" Maximum solving
attempts reached for the validation - result of the following solving
- action ",summaryResult)

// Multiple attempts are taken to solve a result because other changes
may eliminate a blocking reason , but stops after an execution limit

is reached .
}

}
}

Listing 5.191: Examine an ISolvingActionSummaryResult

5.8.5.11 Create a Validation-Result in a Script Task

The resultCreation API provides methods to create new IValidationResults, which could then
be reported to a IValidationResultSink. This is can be used to report validation-results similar
to a validator/generator, but from within a script task.

ValidationResultSink You can retrieve an IValidationResultSink from the method getRe-
sultSink(). Or you get it by the context, e.g. some script tasks pass an IValidationResultSink
as argument (like DV_GENERATION_STEP).

Reporting ValidationResult in Task providing a ResultSink This sample applies to task types
providing a ResultSink in the Task API, like DV_GENERATION_STEP.

© 2025, Vector Informatik GmbH 149 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" ScriptTaskCreationResult " /* Insert with task type providing
resultSink */){

code{
validation {

resultCreation {
// The ValidationResultId group multiple results
def valId = createValidationResultIdForScriptTask (

/* ID */ 1234 ,
/* Description */ " Summary of the ValidationResultId ",
/* Severity */ EValidationSeverityType .ERROR)

// Create a new resultBuilder
def builder = newResultBuilder (valId , " Description of the Result ")

// You can add multiple elements as error objects to mark them
builder . addErrorObject (bswDefRef . EcucGeneral . bswmdModel (). single)
// Add more calls when needed

// Create the result from the builder
def valResult = builder . buildResult ()

// You need to report the result to a resultSink
// You have to get the sink from the context , e.g. script task args
// a sample line would be
resultSinkForTask . reportValidationResult (valResult)

}
}

}}

Listing 5.192: Create a ValidationResult

scriptTask (" ScriptTaskCreationResult ", DV_PROJECT){
code{

validation {
resultCreation {

// The ValidationResultId group multiple results
def valId = createValidationResultIdForScriptTask (

/* ID */ 1234 ,
/* Description */ " Summary of the ValidationResultId ",
/* Severity */ EValidationSeverityType .ERROR)

// Create a new resultBuilder
def builder = newResultBuilder (valId , " Description of the Result ")

// Create the result from the builder
def valResult = builder . buildResult ()

// Access a resultSink to report an on - demand result
resultSink . reportValidationResult (valResult)

// With this method you can clear all the on - demand results
clearOnDemandValidationResults ()

}}}}

Listing 5.193: Report a ValidationResult

5.8.5.12 Clear the on-demand ValidationResult

As shown in the above example, you can clear on-demand results when needed.

With the method clearOnDemandValidationResults(), you can clear all OnDemand results that
are currently existing in the Consistency.

© 2025, Vector Informatik GmbH 150 of 387

Chapter 5. AutomationInterface API Reference

5.8.5.13 Turn off auto-solving-action execution

Auto-solving-action execution is a feature to simplify configuration by automatically adjusting
dependent data after a change was made by the user. This feature runs synchronous to the user
change and may have impact on UI responsiveness. If UI response time is not acceptable, this
should be reported to Vector.

Using setEnabled(boolean), auto-solving-action execution can be disabled to find out if this is
the cause and as an interim workaround.

If auto-solving-action execution is disabled, data might get out of sync after a user change, E.g.
Vtt dual target sync, BSW Internal Behavior, In that case, these have to be solved manually
with the corresponding validaton-result’s solving action.

This setting is stored as user-independent project setting.

This setting can only be changed if isChangeable() returns true (false e.g. due to read-only
project), otherwise an IllegalStateException is thrown.

scriptTask (" SolvingReturnValue ", DV_PROJECT){
code{

validation {
settings {

if (autoSolvingActionExecution . changeable) {
autoSolvingActionExecution . enabled = false

}
}

}
}

}

Listing 5.194: Turn off auto solving action execution

© 2025, Vector Informatik GmbH 151 of 387

Chapter 5. AutomationInterface API Reference

5.9 SystemDescription and StructuredExtract
Beside the raw MDF Model to access the AUTOSAR model, the Configurator provides a lightweight
facade model abstracting parts of the system description modelling of AUTOSAR. This so-called
SIModel provides more convenience in general, and is especially needed to work on the Struc-
turedExtract in a comfortable way.

StructuredExtract in AUTOSAR denotes the System with category SYSTEM_DESCRIPTION
which contains the hierarchic application software composition. A key feature of the SIModel
is the ability to create component prototypes and to connect them to arbitrary other component
prototypes in the composition hierarchy.

Another key feature of the SIModel is the ability for permanent bridging to the underlying MDF
Model: The SIModel-facades will never provide a complete wrapper for the AUTOSAR model.
Instead, at any point in the SIModel it is possible to navigate to the underlying MDF model via
SIModelObject::getMdfObject() to access non-abstracted features. Since the SIModel-facades
are stateless, this will never interfere with the SIModel.

AUTOSAR also defines the FlatExtract as System with category ECU_EXTRACT, which con-
tains the ECU flat view of all software components. The Configurator promotes working directly
on the StructuredExtract, even for the ECU-centric use case. To this end, it utilizes the SIModel
to also provide a FlatView of the StructuredExtract, letting a user browse the structured AU-
TOSAR model as if it was a FlatExtract. Figure 5.10 shows an example illustrating the relation-
ship between the contents of a StructuredExtract and what becomes visible in the FlatView.

Figure 5.10: StructuredExtract and FlatView

The FlatExtract as defined by AUTOSAR is only available on demand as an export use-case.
The FlatExtract export includes specific extensions of the AUTOSAR modelling which are hidden
behind the SIModel for convenient handling.

© 2025, Vector Informatik GmbH 152 of 387

Chapter 5. AutomationInterface API Reference

5.9.1 ISysDescService and sysDescModel-keyword
The sysDescModel-block is fluent API entry point for accessing the SIModel for the system de-
scription. It provides the same methods as the project service ISysDescService.

The ISysDescService project service is the central entry point for accessing the SIModel for the
system description. It provides:

• the flat component view of the StructuredExtract via getFlatComponentView().

• the structured component view of the StructuredExtract via getStructuredCompo-
nentView().

• the StructuredExtract itself via getStructuredExtract().

• access to all StructuredExtracts for split use cases via getStructuredExtracts().

• access to the top-level composition of the structured extract via getStructuredExtract-
TopLevelComposition().

• generic access to a specific SIModel-object via getSIModelObject(AsrPath) or getSIMod-
elObject(MIObject).

• generic access to all instances of a certain SIModel-type via getAllInstancesOfType(Class,
EInstanceFiltering).

• the AUTOSAR root element via getAutosarRoot().

• the preparation for StructuredExtract-usage in case no or an incomplete structured extract
is provided externally via prepareStructuredExtractUsage().

• access to the SIFlatMap and its SIFlatInstanceDescriptors via getFlatMap().

• additional convenience-methods for structured extract usage.

5.9.2 StructuredExtract and FlatView
AUTOSAR describes the relation between the System with category SYSTEM_DESCRIPTION and
the System with category ECU_EXTRACT as follows:

’AUTOSAR VFB Descriptions naturally form hierarchies of CompositionSwComponentTypes.
Consequently, in the System Configuration the SWC-related information for different
EcuInstances is not separated but in general is intermingled. In contrast, for the
task of ECU configuration (RTE configuration, Service Configuration, Measurement and
Calibration) a hierarchically “flat view” on the SwComponentPrototypes running on the
EcuInstances is preferable over a hierarchical view, which is more favored by application-
software development. Thus, deriving an System with category ECU_EXTRACT actually
is a model transformation, following a set of rules.’

This transformation (example shown in Figure 5.10 on the preceding page) is provided via two
APIs. ISysDescService.getFlatComponentView() provides the view of the software components,
and SIComponentPort.getFlatViewConnectedPorts() provides the view of their connections.
The flattening is done virtually, so each SIComponent has its full hierarchy information provided
via SIComponent.getContext(). The details of the context concept is described in chapter 5.9.2.3
on the next page.

© 2025, Vector Informatik GmbH 153 of 387

Chapter 5. AutomationInterface API Reference

5.9.2.1 StructuredComponentView vs. FlatComponentView

Beside the flat component view - which only contains atomic software components as defined by
AUTOSAR - the ISysDescService also provides a full list of software components which also
contains all components of composition types and the top-level composition itself via ISysDesc-
Service.getStructuredComponentView()

The components in both lists provide their full hierarchy context. Since the shortname of a com-
ponent may not be unique anymore in the hierarchy - either by choosing the same name for a com-
ponent in different compositions or by multi-instantiation of the same composition - the according
SIComponent provides a unique name in the hierarchy via SIComponent.getUniqueSwcNameInHierarchy().

5.9.2.2 Component-Instantiation

Component-Instantiation in general is possible in all composition types. The SIModel works with
feature-lists which provide according createAndAdd-methods for the actual list content. The most
common use-case is to instantiate an atomic software component type in the top-level compo-
sition of the structured extract. Listing 5.195 shows an example where an application software
component type is retrieved and instantiated as software component prototype in the top-level
composition.

transaction {
sysDescModel {

// retrieve the application component type
SIApplicationComponentType applicationComponentType = siModelObject (AsrPath .

create ("/a/b/c/ MyApplicationSwcType ")). orElse (null)

// retrieve the top -level composition
SICompositionComponentSubstitute topLevelComposition =

structuredExtractTopLevelComposition . orElse (null)

if (applicationComponentType != null && topLevelComposition != null) {

// instantiate the component type by creating and adding a component to
the top -level composition component feature -list

SIApplicationComponent myComponent = topLevelComposition . component
. createAndAdd (" MyComponent ", SIApplicationComponent .class ,

applicationComponentType)

}

}
}

Listing 5.195: Example of component instantiation

5.9.2.3 Context and CompositionComponentSubstitute

Working on a structured extract implies challenges regarding the software composition hierarchy,
connections between and instance references to dedicated software components nested inside the
hierarchy. Therefore, the SIModel facades introduce the SICompositionComponentSubstitute to
represent the top-level composition of a composition hierarchy.

For all SIComponents obtained as children of an SICompositionComponentSubstitute, their
SIComponent.getContext() method provides the full nesting hierarchy of compositions up to the
SICompositionComponentSubstitute. For example, the context lists for the structured extract
shown in figure 5.10 on page 152 can be illustrated as in figure 5.11 on the following page.

© 2025, Vector Informatik GmbH 154 of 387

Chapter 5. AutomationInterface API Reference

This has the following advantages and implications:

• The SICompositionComponentSubstitute allows to handle a top-level composition the same
way as a component.

• Traversing the software composition hierarchy via an SICompositionComponentSubstitute
ensures correct contexts for each contained SIComponent.

• The context of a component is a list always starting with the top-level SICompositionCom-
ponentSubstitute, followed by all SICompositionComponents in the hierarchy.

• All SIComponentPorts retrieved via SIComponent.getComponentPort() with full context
can be connected via IConnectionBuilder without a caller having to consider the compo-
sition hierarchy (see 5.9.2.4).

• SICommunicationElements retrieved from SIComponentPort with full context can be used as
target for SIDataMapping.setCommunicationElement(SICommunicationElement) to com-
ponents nested in the hierarchy.

• ISysDescService.getFlatComponentView() and ISysDescService.getStructuredComponentView()
each provide flat lists of all components in the hierarchy, with contexts set correctly for the
ISysDescService.getStructuredExtract().

Figure 5.11: FlatViewComponents with context

5.9.2.4 ComponentPorts and ConnectionBuilder

The SIComponentPort-facade represents a port prototype bound to an actual component proto-
type: in AUTOSAR, this relation is only represented by an instance-reference e.g. to identify the
requester and provider port of an assembly connector. In combination with the full context of the

© 2025, Vector Informatik GmbH 155 of 387

Chapter 5. AutomationInterface API Reference

bound SIComponent, this allows to build connection between arbitrary SIComponentPorts: there-
fore the SIModel provides the IConnectionBuilder to define connections with an appropriate
provisioning of additional properties.

The listing 5.196 shows an example of how to create the connections as seen in figure 5.10 on
page 152.

The IConnectionBuilder should be the preferred solution when building more than one con-
nection due to performance reasons. When only one connection needs to be build occasionally
and not all features are needed, the SIComponentPort.connectTo(SIComponentPort) creates one
connection with a simpler entry.

transaction {
sysDescModel {

// prepare connection builder , flat component view and retrieval functions
IConnectionBuilder connectionBuilder = getProjectContext (). getService (

ISysDescBuilderFactory . class)
. createConnectionBuilder ()

List < SIComponent > flatComponentView = getFlatComponentView ()
Function <String , SIComponent > getComponent = (name) -> flatComponentView .

stream ()
. filter (comp -> comp. getName (). equals (name))
. findFirst (). orElse (null)

BiFunction <String , SIComponent , SIComponentPort > getComponentPort = (name ,
comp) -> comp

. getComponentPort (). stream ()

. filter (compPort -> compPort . getPortName (). equals (name))

. findFirst (). orElse (null)

// retrieve components to connect
final SIComponent c = getComponent .apply("C")
final SIComponent d = getComponent .apply("D")
final SIComponent h = getComponent .apply("H")
final SIComponent e = getComponent .apply("E")
final SIComponent f = getComponent .apply("F")

// prepare the connection builders
IPreparedConnectionBuilder builder1 = connectionBuilder

. setProviderPort (getComponentPort .apply(" PPort1 ", c))

. setRequesterPort (getComponentPort .apply("RPort", d))

. prepare ()
IPreparedConnectionBuilder builder2 = connectionBuilder

. setProviderPort (getComponentPort .apply(" PPort2 ", c))

. setRequesterPort (getComponentPort .apply("RPort", h))

. prepare ()
IPreparedConnectionBuilder builder3 = connectionBuilder

. setProviderPort (getComponentPort .apply("PPort", e))

. setRequesterPort (getComponentPort .apply("RPort", f))

. prepare ()

// now build the connections
IConnectionData connections1 = builder1 .build ()
IConnectionData connections2 = builder2 .build ()
IConnectionData connections3 = builder3 .build ()

}
}

Listing 5.196: Example of connection builder

© 2025, Vector Informatik GmbH 156 of 387

Chapter 5. AutomationInterface API Reference

5.9.3 Examples

sysDescModel {
flatComponentView .each { // flat view of the structured extract

// components in the flat component view provide a unique name for the
flat view

def uniqueSwcNameInHierarchy = it. getUniqueSwcNameInHierarchy ()

// components in the flat component view contain the full context
hierarchy

scriptLogger .info(" Component '{0}' with context : {1}",
uniqueSwcNameInHierarchy , it. context . stream ().map(SIComponent :: getName
). collect (Collectors . joining (".")))

switch (it) {
case it instanceof SIApplicationComponent :

def appType = it. componentType

// example bridge to mdf
appType . runnableEntity .each {

handleAppTypeEntitiesOnMdfLevel (appType .mdfObject , it. mdfObject
)

}
break

case it instanceof SIServiceComponent :
handleServiceComponent (it)
break

default :
handleDefault ()

}
}

}

Listing 5.197: Example of accessing the flat component view

© 2025, Vector Informatik GmbH 157 of 387

Chapter 5. AutomationInterface API Reference

transaction {
sysDescModel {

List < SIComponent > flatComponentViewComponents = flatComponentView

SIComponentPort sourcePort = flatComponentViewComponents . stream ()
. filter (comp -> comp. getName (). equals (" SourceComponent "))
. flatMap (comp -> comp. getComponentPort (). stream ())
. filter (componentPort -> componentPort . getPortName (). equals (" SourcePort "))
. findFirst (). orElse (null)

SIComponentPort targetPort = flatComponentViewComponents . stream ()
. filter (comp -> comp. getName (). equals (" TargetComponent "))
. flatMap (comp -> comp. getComponentPort (). stream ())
. filter (componentPort -> componentPort . getPortName (). equals (" TargetPort "))
. findFirst (). orElse (null)

if (sourcePort != null && targetPort != null) {

// Connects either direct (same Composition -Level , or ServiceConnector).
// Or does create delegation ports (different Composition -Level and App -

Components).
sourcePort . connectTo (targetPort)

boolean isDirectConnected = sourcePort . getConnectedPorts (). contains (
targetPort)

boolean isConnectedViaChain = sourcePort . getFlatViewConnectedPorts ().
stream ()

. filter (condata -> condata . getConnectors ().size () > 1)

. anyMatch (condata -> targetPort . equals (condata . getConnectedComponentPort
()))

}
}

}

Listing 5.198: Example of connecting component ports in the flat component view

© 2025, Vector Informatik GmbH 158 of 387

Chapter 5. AutomationInterface API Reference

transaction {
sysDescModel {

// retrieve toplevel - composition of StructuredExtract
def topLevelComposition = structuredExtract .get (). topLevelComposition

// retrieve the service component
topLevelComposition . component . stream (). filter (comp -> " ServiceSWCTopLevel ".

equals (comp.name)). findFirst ()
. ifPresent (serviceComponent -> {

// retrieve an application component type , create the toplevel
prototype and connect it to a service component prototype

def myAppComponentTypePath = AsrPath . create ("/ ComponentTypes /
ApplicationSWCTopLevel ")

siModelObject (myAppComponentTypePath). ifPresent (appType -> {
// create the component prototype
def myAppComponentPrototype = topLevelComposition . component .

createAndAdd ("MyApp", SIApplicationComponent .class , appType)
def appComponentPPort = myAppComponentPrototype . componentPort .

getFirst ()

// connector one of its ports to a service component
def serviceComponentRPort = serviceComponent . getComponentPort ().

getFirst ()
// create a connection on toplevel
topLevelComposition . getConnector (). createAndAdd (

SIAssemblyConnector .class , appComponentPPort ,
serviceComponentRPort)

})

// make a service connection into a composition hierarchy
topLevelComposition . component . stream (). filter (comp -> "

CompositionLayer1 ". equals (comp.name)). findFirst (). ifPresent (
compositionComponent -> {

// get the inner component directly from the component prototype
to know the correct context

def hierarchicComponent = compositionComponent . component .
getFirst ()

def hierarchicComponentPort = hierarchicComponent . componentPort .
getFirst ()

// connect it to a service component
def serviceComponentRPort = serviceComponent . componentPort .get

(1)
// create a service connection into the hierarchy
topLevelComposition . connector . createAndAdd (SIServiceConnector .

class , hierarchicComponentPort ,
serviceComponentRPort)

})
})

}
}

Listing 5.199: Example of accessing the StructuredExtract

© 2025, Vector Informatik GmbH 159 of 387

Chapter 5. AutomationInterface API Reference

transaction {
sysDescModel {

// retrieve a AR package to create a new application component type
def arPackage = siModelObject (AsrPath . create ("/ ComponentTypes ")).get ()

// create a new application component type
def appType = arPackage . element . createAndAdd (" ExampleAppType ",

SIApplicationComponentType . class)

// create a runnable entity and event
def runnable = appType . runnableEntity . createAndAdd (" ExampleRunnable ")
def timingEvent = appType .event. createAndAdd (" ExampleTimingEvent ",

SITimingEvent .class)
timingEvent . period = 0.1

// connect the event to the runnable
timingEvent . startOnEvent = runnable

}
}

Listing 5.200: Example of accessing internal behavior elements

© 2025, Vector Informatik GmbH 160 of 387

Chapter 5. AutomationInterface API Reference

5.10 Domains
The domain APIs are specifically designed to provide high convenience support for typical domain
use cases.

The domain API is the entry point for accessing the different domain interfaces. It is available in
opened projects in the form of the IDomainApi interface.

IDomainApi provides methods for accessing the different domain-specific APIs. Each domain’s
API is available via the domain’s name. For an example see the communication domain API
5.10.1.

getDomain() allows accessing the IDomainApi

scriptTask ('taskName ') {
code {

// IDiagnosticsApi is available as " diagnostics " property
def diagnostics = domain . diagnostics

}
}

Listing 5.201: Accessing IDiagnosticsApi as a property

domain(Transformer) allows accessing the IDomainApi in a scope-like way.

scriptTask ('taskName ') {
code {

domain . diagnostics {
// IDiagnosticsApi is available here

}
}

}

Listing 5.202: Accessing IDiagnosticsApi in a scope-like manner

5.10.1 Communication Domain
The communication domain API is specifically designed to support communication related use
cases. It is available from the com.vector.cfg.automation.scripting.base.IAutomationContext.IDomainApi
5.10 in the form of the ICommunicationApi interface.

getCommunication() allows accessing the ICommunicationApi like a property.

scriptTask ('taskName ') {
code {

// ICommunicationApi is available as " communication " property
def communication = domain . communication

}
}

Listing 5.203: Accessing ICommunicationApi as a property

communication(Transformer) allows accessing the ICommunicationApi in a scope-like way.

© 2025, Vector Informatik GmbH 161 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ') {
code {

domain . communication {
// ICommunicationApi is available inside this Closure

}
}

}

Listing 5.204: Accessing ICommunicationApi in a scope-like way

The following use cases are supported:

Accessing Can Controllers getCanControllers() returns a list of all ICanControllers in the
configuration 5.10.1.1 on the following page.

Accessing Can Pdus getCanPdus() returns a list of all ICanPdus in the configuration. Can Pdus
of a certain Can Controller can also be accessed via ICanController.getCanPdus(). 5.10.1.3 on
page 164

© 2025, Vector Informatik GmbH 162 of 387

Chapter 5. AutomationInterface API Reference

5.10.1.1 CanControllers

An ICanController instance represents a CanController MIContainer providing support for use
cases exceeding those supported by the model API.

scriptTask ('OptimizeAcceptanceFilters ') {
code {

transaction {
domain . communication {

// open acceptance filters of all CanControllers
canControllers *. openAcceptanceFilters ()

// open acceptance filters of first CanController
canControllers .first. openAcceptanceFilters ()
canControllers [0]. openAcceptanceFilters () // same as above

// open acceptance filters of second CanController
// (if there is a second CanController)
canControllers [1]?. openAcceptanceFilters ()

// open acceptance filters of a dedicated CanController
canControllers . filter { it. getMdfObject (). getName (). contains 'CH0 ' }.

single . openAcceptanceFilters ()

// accessing a dedicated CanController
def ch0 = canControllers . filter { it. getMdfObject (). getName (). contains '

CH0 ' }. single

// assert : ch0 's first CanFilterMask value is XXXXXXXXXXX
assert 'XXXXXXXXXXX ' == ch0. canFilterMasks [0]. filter

// set CanFilterMask value to 01111111111
ch0. canFilterMasks [0]. filter = '01111111111 '
assert '01111111111 ' == ch0. canFilterMasks [0]. filter

// automatic acceptance filter optimization
ch0. optimizeFilters { fullCan = true }

}
}

scriptLogger .info('Successfully optimized Can acceptance filters .')
}

}

Listing 5.205: Optimizing Can Acceptance Filters

Opening Acceptance Filters openAcceptanceFilters() opens all of this ICanController’s ac-
ceptance filters.

Optimizing Acceptance Filters optimizeFilters(Action) optimizes this ICanController’s ac-
ceptance filter mask configurations. The given Closure is delegated to the IOptimizeAcceptance-
FiltersApi interface for parameterizing the optimization.

Using setFullCan(boolean) it can be specified whether the optimization shall take full can objects
into account or not.

Creating new CanFilterMasks createCanFilterMask() creates a new ICanFilterMask for this
ICanController.

© 2025, Vector Informatik GmbH 163 of 387

Chapter 5. AutomationInterface API Reference

Accessing a CanController’s CanFilterMasks getCanFilterMasks() returns all of this ICan-
Controller’s ICanFilterMasks.

Accessing a CanController’s MIContainer getMdfObject() returns the MIContainer repre-
sented by this ICanController.

5.10.1.2 CanFilterMasks

An ICanFilterMask instance represents a CanFilterMask MIContainer providing support for use
cases exceeding those supported by the model API.

For example code see 5.10.1.1 on the preceding page. The following use cases are supported:

Filter Types ECanAcceptanceFilterType lists the possible values for an ICanFilterMask’s filter
type.

STANDARD results in a standard Can acceptance filter value with length 11.

EXTENDED results in an extended Can acceptance filter value with length 29.

MIXED results in a mixed Can acceptance filter value with length 29.

Accessing a CanFilterMask’s Filter Type getFilterType() returns this ICanFilterMask’s filter
type.

Specifying a CanFilterMask’s Filter Type Using setFilterType(ECanAcceptanceFilterType)
this ICanFilterMask’s filter type can be specified.

Accessing a CanFilterMask’s Filter Value getFilter() returns this ICanFilterMask’s filter
value. A CanFilterMask’s filter value is a String containing the characters ’0’, ’1’ and ’X’ (don’t
care). For determining if a given Can ID passes the filter it is matched bit for bit against the
String’s characters. The character at index 0 is matched against the most significant bit. The
character at index length() - 1 is matched against the least significant bit. The length of the
String corresponds to the CanFilterMask’s filter type.

Specifying a CanFilterMask’s Filter Value Using setFilter(String) this ICanFilterMask’s
filter value can be specified.

Accessing a CanFilterMask’s MIContainer getMdfObject() returns the MIContainer repre-
sented by this ICanFilterMask.

5.10.1.3 CanPdus

An ICanPdu represents a Pdu of the CanIf module.

• disableFullCan() disables the FullCAN feature for this ICanPdu. In other words the corre-
sponding FullCAN hardware object will be deleted and the references redirected to a suitable
BasicCAN hardware object.

© 2025, Vector Informatik GmbH 164 of 387

Chapter 5. AutomationInterface API Reference

To enable the FullCAN feature please use enableFullCan().

• enableFullCan() enables the FullCAN feature for this ICanPdu. In other words a corre-
sponding FullCAN hardware object will be created and the references of the relevant objects
redirected to it from the previously referenced BasicCAN hardware object.

To disable the FullCAN feature please use disableFullCan(). If the FullCAN feature is
already enabled can be checked using isFullCanEnabled(). This might be useful to avoid
multiple hardware objects for the same PDU, when using enableFullCan() more than once
on the same PDU.

• setFullCanLocked(boolean) switches whether the filter optimization algorithm is allowed
to change the configured CAN handle type (BasicCAN/FullCAN) or not.

If locked the selected CAN handle type (FullCAN/BasicCAN) of the corresponding Rx-PDU
is NOT touched and NOT changed by the filter optimization algorithm.

Tx ICanPdus are ignored by this method, since the lock is only available for Rx ICanPdus.

• isFullCanEnabled() determines whether the configured CAN handle type is FullCAN or
BasicCAN .

The CAN handle type can be changed between FullCAN and BasicCAN using enableFull-
Can() and disableFullCan() methods.

• isFullCanLocked() determines whether the CAN handle type is locked for the filter opti-
mization algorithm.
Note: Only Rx ICanPdus can be locked, so returns always false for Tx ICanPdus.

Accessing a CanController’s CanPdus getCanPdus() returns all of this ICanController’s ICan-
Pdus.

Accessing a CanPdu’s MIContainer getMdfObject() returns the MIContainer represented by
this ICanPdu.

© 2025, Vector Informatik GmbH 165 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.model.asr.view. IModelViewExecutionContext

scriptTask (" enableFullCAN ", DV_PROJECT){
code {

transaction {
domain . communication {

variance {
getAllPostBuildVariantViewsOrInvariant ().each {

if (it. getName (). equals ("Left")) {
final IModelViewExecutionContext context = it. executeWithThisView ()
context . withCloseable {

canPdus . filter {
it. getMdfObject (). getName (). equals ("

RxFullCanDisabled1_0a94227e_Rx ")
}*. enableFullCan ()

}
}

}
}

}
}

}
}

Listing 5.206: Enable FullCAN feature for PDU

import com. vector .cfg.model.asr.view. IModelViewExecutionContext

scriptTask (" disableFullCAN ", DV_PROJECT){
code {

transaction {
domain . communication {

variance {
getAllPostBuildVariantViewsOrInvariant ().each {

if (it. getName (). equals ("Left")) {
final IModelViewExecutionContext context = it. executeWithThisView ()
context . withCloseable {

canControllers . filter {
it. getMdfObject (). getName (). equals (" Controller_MyEcu_1_2514e902 "

)
}*. canPdus
. flatten ()
*. disableFullCan ()

}
}

}
}

}
}

}
}

Listing 5.207: Disable FullCAN feature for all PDUs of CanController

5.10.1.4 J1939 Requestable Configuration

IJ1939RCApi provides high convenience support for J1939RC related use cases.

• executeValidationRules() checks the current EcuC configuration and sets the J1939 Re-
questable Flag on the PDU if necessary.

© 2025, Vector Informatik GmbH 166 of 387

Chapter 5. AutomationInterface API Reference

5.10.2 Diagnostics Domain
The diagnostics domain API is specifically designed to support diagnostics related use cases. It is
available from the com.vector.cfg.automation.scripting.base.IAutomationContext.IDomainApi
5.10 on page 161 in the form of the IDiagnosticsApi interface.

getDiagnostics allows accessing the IDiagnosticsApi like a property.

scriptTask ('taskName ') {
code {

// IDiagnosticsApi is available as " diagnostics " property
def diagnostics = domain . diagnostics

}
}

Listing 5.208: Accessing IDiagnosticsApi as a property

diagnostics(Transformer) allows accessing the IDiagnosticsApi in a scope-like way.

scriptTask ('taskName ') {
code {

domain . diagnostics {
// IDiagnosticsApi is available here

}
}

}

Listing 5.209: Accessing IDiagnosticsApi in a scope-like manner

The following use cases are supported:

Dem Events The API provides access and creation of IDemEvents in the configuration. See
chapter 5.10.2.1 on the following page for more details.

Check for OBD II isObd2Enabled() checks, if OBD II is available in the configuration.

Enable OBD II setObd2Enabled(boolean) enables or disables OBD II in the configuration.
Note, that OBD II can only be enabled, if a valid SIP license was found.

Check for WWH-OBD isWwhObdEnabled() checks, if WWH-OBD is available in the configura-
tion.

Enable WWH-OBD setWwhObdEnabled(boolean) enables or disables WWH-OBD in the con-
figuration. Note, that WWH-OBD can only be enabled, if a valid SIP license was found.

© 2025, Vector Informatik GmbH 167 of 387

Chapter 5. AutomationInterface API Reference

5.10.2.1 DemEvents

An IDemEvent instance represents a diagnostic event and and provides usecase centric functional-
ities to modify and query diagnostic events.

Accessing Dem Events getDemEvents() returns a list of all IDemEvents in the configuration.

Creating Dem Events createDemEvent(Action) is used to create diagnostic events of different
kinds.

The method can be configured to create different types of DTCs/Events:

1. UDS Event: This is the default type of event, when only an ’eventName’ and a ’dtc’ num-
ber is specified. A new DemEventParameter container with the given shortname and a new
DemDTCClass with the given DemUdsDTC is created.

scriptTask ('taskName ') {
code {

transaction {
domain . diagnostics {

def udsEvent = createDemEvent {
eventName = " NewUdsEvent "
dtc = 0x30

}
}}}}

Listing 5.210: Create a new UDS DTC with event

2. OBD II Event: If OBD II is enabled for the loaded configuration, and a ’obd2Dtc’ is spec-
ified instead of a ’dtc’, the method will create an OBD II relevant event. The difference is,
that it will set the parameter DemObdDTC instead of DemUdsDTC. It is also possible to
specify ’dtc’ as well as ’obd2dtc’, which will result in both DTC parameters are set.

scriptTask ('taskName ') {
code {

transaction {
domain . diagnostics {

// OBD must be enabled and legislation must be OBD2
// Enable OBD2
obd2Enabled = true

def obd2Event = createDemEvent {
eventName = 'NewOBD2Event '
obd2Dtc = 0x40

}

def obd2CombinedEvent = createDemEvent {
eventName = 'UDS_OBD2_Combined_Event '
dtc = 0x31
obd2Dtc = 0x41

}
}}}}

Listing 5.211: Enable OBD II and create a new OBD related DTC with event

© 2025, Vector Informatik GmbH 168 of 387

Chapter 5. AutomationInterface API Reference

3. WWH-OBD Event: If WWH-OBD is enabled for the loaded configuration, and a ’wwhOb-
dDtcClass’ with a value other than ’NO_CLASS’ is specified, the method will create a
WWH-OBD relevant event. Note that WWH-OBD relevant events usually du reference the
so called MIL indicator, thus this reference will be set by default in the newly created De-
mEventParameter.

scriptTask ('taskName ') {
code {

transaction {
domain . diagnostics {

// OBD must be enabled , and legislation must be WWH -OBD
// The parameter '/Dem/ DemGeneral / DemMILIndicatorRef ' must be

set
wwhObdEnabled = true

def wwhObdEvent = createDemEvent {
eventName = 'WWHOBD_Event '
dtc = 0x50
// wwhObdClass != NO_CLASS indicates WWH -OBD event
wwhObdDtcClass = CLASS_A

}
}}}}

Listing 5.212: Enable WWH-OBD and create a new OBD related DTC with event

4. J1939 Event: The last type of event is a J1939 related event, which can be created when
J1939 is licensed and available for the loaded configuration. This is done in a similar way
as for UDS events, but additionally specifying ’spn’, ’fmi’ values as well as the name of the
referenced ’nodeAddress’.

scriptTask ('taskName ') {
code {

def nodeAddressContainer = mdfModel (AsrPath . create ("/ ActiveEcuC /Dem/
DemConfigSet / DemJ1939NodeAddress ", MIContainer))

transaction {
domain . diagnostics {

// J1939 Event creation
// J1939 must be enabled and License must be available .
j1939Enabled = true

def j1939Event = createDemEvent {
eventName 'J1939_Event '
dtc 0x30
spn 90
fmi 13
nodeAddress nodeAddressContainer

}
}}}}

Listing 5.213: Open a project, enable J1939 and create a new J1939 DTC with event

Important Note:
For every DTC numbers apply the rule, that if there are already DemDTCClasses with the
given number, they will be used. In such a case, no new DemDTCClass container is created.

© 2025, Vector Informatik GmbH 169 of 387

Chapter 5. AutomationInterface API Reference

5.10.3 Mode Management Domain
The mode management domain API is specifically designed to support mode management related
use cases. It is available from the com.vector.cfg.automation.scripting.base.IAutomationContext.IDomainApi
5.10 on page 161 in the form of the IModeManagementApi interface.

getModeManagement() allows accessing the IModeManagementApi like a property.

scriptTask ('taskName ') {
code {

// IModeManagementApi is available as " modeManagement " property
def modeManagement = domain . modeManagement

}
}

Listing 5.214: Accessing IModeManagementApi as a property

modeManagement(Transformer) allows accessing the IModeManagementApi in a scope-like way.

scriptTask ('taskName ') {
code {

domain . modeManagement {
// IModeManagementApi is available inside this Closure

}
}

}

Listing 5.215: Accessing IModeManagementApi in a scope-like way

5.10.3.1 BswM Auto Configuration

The IBswMAutoConfigurationApi allows for semi-automatic creation of dedicated parts of the
BswM configuration. The BswM auto configuration takes an input consisting of "features" and
"parameters" to be provided via the IBswMAutoConfigurationApi. Each feature may have zero,
one or more sub-features and zero, one or more parameters.

The corresponding BswM configuration content is derived based on the (de)activation of features
and the values assigned to the parameters.

The available features and parameters depend strongly on the project’s input data and general
project setup. They can be addressed by String identifiers. These identifiers are best obtained
from the corresponding auto configuration assistant of the BSW management editor in the Cfg5
GUI.

© 2025, Vector Informatik GmbH 170 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('EcuStateHandlingAutoConfiguration ', DV_PROJECT) {
code {

// In projects with post -build selectable variance switching to an
// IPredefinedVariantView for performing auto configuration is mandatory
variance . variantView ('Left '). activeWith {

domain . modeManagement . bswMAutoConfig ('Ecu State Handling ') {
activate '/ECU State Machine / Support ComM '
set '/ECU State Machine /Self Run Request Timeout ' to 0.2
set '/ECU State Machine / Number of Run Request User ' to 4
overrides {

if (addition || removal) {
keepOverride

} else if (BswMArgumentRef . DefRef . isDefinitionOf (element)
&& feature ('/ECU State Machine / Support ComM/ CAN00_f26020e5 ').

enabled
&& parameter ('/ECU State Machine / Number of PostRun Request User '

).value == 4) {
discardOverride

} else {
keepOverride

}
}

}
}

}
}

Listing 5.216: ECU State Handling Auto Configuration

Executing the BswM Auto Configuration IModeManagementApi.bswMAutoConfig(String, Trans-
former) delegates the given code to the IBswMAutoConfigurationApi of the given BswM auto
configuration domain. Also see overload bswMAutoConfig(MIContainer, String, Transformer)
for using this API in multi partition use case.

Activating BswM Auto Configuration Features activate(String) activates the BswM auto
configuration feature with the given identifier. All enabled sub-features of the specified feature
are also activated. Imagine the features displayed in a tree structure (like in Cfg5 GUI) where
checking a tree node automatically checks all children.

Deactivating BswM Auto Configuration Features deactivate(String) deactivates the BswM
auto configuration feature with the given identifier. All enabled sub-features of the specified feature
are also deactivated. Imagine the features displayed in a tree structure (like in Cfg5 GUI) where
unchecking a tree node automatically unchecks all children.

Assigning Values to BswM Auto Configuration Parameters set(String) sets the parameter
with the given identifier to the specified value. Supported value types are boolean, BigInteger,
Double, String and MIReferrable (reference parameters).

Manually Adapting the BswM Auto Configuration Content The BswM auto configuration
mechanism is useful for creating large parts of the BswM configuration based on certain built-
in heuristics. Where these heuristics fail to fulfill detailed project specific requirements manual
adaptations to the auto-generated configuration content become necessary.

© 2025, Vector Informatik GmbH 171 of 387

Chapter 5. AutomationInterface API Reference

Per default manual adjustments are kept in the configuration. But subsequent BswM auto config-
uration runs may render previously applied adjustments obsolete or dysfunctional. Using over-
rides(Action) a callback can be registered to be called for each detected adaptation. The callback
can decide for each adjustment if it is to remain in the configuration or if it is to be overwritten by
the BswM auto configuration. For details on which information is provided to this callback please
refer to the javadoc provided with IBswMAutoConfigurationOverride.

Inspecting BswM Auto Configuration Domains The getBswMAutoConfigDomains() method of
the IModeManagementApi interface provides read-access to all available BswM auto configuration
domains. Available features and parameters can be inspected for various properties. See javadoc
of IBswMAutoConfigurationDomain, IBswMAutoConfigurationFeature and IBswMAutoConfig-
urationParameter for details. Also see overload getBswMAutoConfigDomains(MIContainer) for
using this API in multi partition use case.

© 2025, Vector Informatik GmbH 172 of 387

Chapter 5. AutomationInterface API Reference

domain . modeManagement {
// In projects with post -build selectable variance switching to an
// IPredefinedVariantView for inspecting auto configuration is mandatory
variance . variantView ('Left '). activeWith {

// get all BswM auto configuration domains
bswMAutoConfigDomains . forEach {

scriptLogger .info it. identifier
}

def isEnabled = bswMAutoConfigDomain 'Ecu State Handling ' feature '/ECU State
Machine / Support ComM ' enabled

def isActivated = bswMAutoConfigDomain 'Ecu State Handling ' feature '/ECU
State Machine / Support ComM ' activated

if (isEnabled && isActivated) {
// activation state can be toggled at enabled features only
bswMAutoConfig ('Ecu State Handling ') {

deactivate '/ECU State Machine / Support ComM '
}

}

bswMAutoConfigDomain ('Ecu State Handling ') {
// this code is delegated to the 'Ecu State Handling '
// auto configuration domain
def p1 = parameter '/ECU State Machine /Self Run Request Timeout ' value
scriptLogger .info 'Self Run Request Timeout = ' + p1
def p2 = parameter '/ECU State Machine / Number of Run Request User ' value
scriptLogger .info 'Number of Run Request User = ' + p2

// get all root features
rootFeatures . forEach { scriptLogger .info it. identifier }

// get all sub - features of a feature
feature '/ECU State Machine / Support ComM ' subFeatures . forEach {

scriptLogger .info it. identifier
}

// get all parameters of a feature
feature '/ECU State Machine ' parameters . forEach {

scriptLogger .info it. identifier
}

}
}

}

Listing 5.217: Inspecting Auto Configuration Elements

5.10.4 Runtime System Domain
The runtime system domain API is specifically designed to support runtime system related use
cases. It is available from the IAutomationContext.IDomainApi (see 5.10 on page 161) in the
form of the IRuntimeSystemApi interface.

Remark: The runtime system domain API is designed to work on the flat extract of the System
Description. Since the flat extract is now only created on demand, the API works on the flat-view
of the structured extract

getRuntimeSystem() allows accessing the IRuntimeSystemApi like a property.

© 2025, Vector Informatik GmbH 173 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ') {
code {

// IRuntimeSystemApi is available as " runtimeSystem " property
def runtimeSystem = domain . runtimeSystem

}
}

Listing 5.218: Accessing IRuntimeSystemApi as a property

runtimeSystem(Transfomer) allows accessing the IRuntimeSystemApi in a scope-like way.

scriptTask ('taskName ') {
code {

domain . runtimeSystem {
// IRuntimeSystemApi is available inside this Closure

}
}

}

Listing 5.219: Accessing IRuntimeSystemApi in a scope-like way

The access point for elements of the runtime system domain are the selections. They are most of
the time your starting point and offer predicates to filter for elements which are relevant. These
selections can be used to get the elements for further work, but they also offer direct methods for
actions that can be performed for them.

As default the selection APIs select always from all elements, but you can also put elements into
most selections and use predicates to filter them. The put methods helps you to transfer the
elements from selection to selection and put newly created elements into the next selection to
perform the next step of your workflow.

We will start by introducing each selection API and will then have a look on common use cases.
Before starting to implement a use case it might be helpful to have a quick look into the chapters
of the selections that are required for it. The objects such as communication element or component
port used in the runtime system domain API are explained in the chapter of the corresponding
selection API.

5.10.4.1 Component Port Selection

A component port (SIComponentPort) represents a port prototype and its corresponding com-
ponent prototype, and in case of a delegation port the corresponding top level composition type
(ECU Composition).

selectComponentPorts(Action) allows the selection of SIComponentPorts using predicates.

The component port selection can be used to select and filter component ports and either do
further operations on them, such as connecting to other ports, terminating them or to just return
a list of component ports with which you can continue working.

getComponentPorts() allows access to the single component ports in the IComponentPortSelec-
tion.

Component Port Predicates To select component ports predicates can be provided to narrow
down the result.

© 2025, Vector Informatik GmbH 174 of 387

Chapter 5. AutomationInterface API Reference

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• unconnected() matches unconnected component ports.

• connected() matches connected component ports.

• completed() matches component ports which are completed.

A delegation port is completed if and only if the port is connected and each of the port’s
communication elements is either data mapped to a system signal or a system signal group
or referenced by flat instance descriptors referring to cross sw cluster RTE implementation
plug-ins.

An inner port is completed if the port is connected or each of the port’s communication
elements is data mapped to a system signal or a system signal group. This means an inner
port which is connected and data mapped is also completed.

• notCompleted() matches component ports which are not completed.

See completed() for the conditions a port has to meet to be a completed port.

• terminated() matches terminated component ports.

• notTerminated() matches non-terminated component ports.

• senderReceiver() matches component ports whose port has a sender/receiver port interface.

• clientServer() matches component ports whose port has a client/server port interface.

• modeSwitch() matches component ports whose port has a mode-switch port interface.

• nvData() matches component ports whose port has a NvData port interface.

• parameter() matches component ports whose port has a parameter (calibration) port inter-
face.

• trigger() matches component ports whose port has a trigger port interface.

• provided() matches provided component ports (p-port).

• required() matches required component ports (r-port).

• providedRequired() matches provided-required component ports (pr-port).

• delegation() matches delegation ports (ports of the Ecu composition).

• application() matches component ports whose port interface is an application port inter-
face.

• service() matches component ports whose port interface is an service port interface.

• applicationComponent() matches component ports whose component type is an applica-
tion component type. Application component types are all component types which are not
service component types, as displayed in the ECU Software Components Editor, not Appli-
cationSwComponentTypes as defined by AUTOSAR.

• serviceComponent() matches component ports whose component type is a service compo-
nent type.

© 2025, Vector Informatik GmbH 175 of 387

Chapter 5. AutomationInterface API Reference

• parameterComponent() matches component ports whose component type is a parameter
component type.

• nvBlockComponent() matches component ports whose component type is a nv block com-
ponent type.

• sensorActuatorComponent() matches component ports whose component type is a sensor
actuator component type.

• ioHwAbstractionComponent() matches component ports whose component type is a I/O
hardware abstraction component type, also called EcuAbstractionSwComponentType.

• complexDeviceDriverComponent() matches component ports whose component type is a
complex device driver component type.

• serviceProxyComponent() matches component ports whose component type is a service
proxy component type.

• name(String) matches component ports with the given port name.

• names(Collection) matches component ports with the given port names. The order of the
names is not relevant in any kind.

• name(Pattern) matches component ports with the given port name pattern.

• componentPortName(String) matches component ports with the given component port
name.
The component name and port name are separated by a dot, e.g. ’MySwc.MyApplicationPort’,
’ECU Composition.MyDelegationPort’. See also SIComponentPort.getName().

• componentPortNames(Collection) matches component ports with the given component
port names.
The component name and port name are separated by a dot, e.g. ’MySwc.MyApplicationPort’,
’ECU Composition.MyDelegationPort’. See also SIComponentPort.getName().
The order of the names is not relevant in any kind.

• asrPath(String) matches component ports with the given port autosar path.

• asrPath(Pattern) matches component ports with the given port autosar path pattern.

• component(String) matches component ports with the given component name.

• components(Collection) matches component ports with the given component names. The
order of the names is not relevant in any kind.

• component(Pattern) matches component ports with the given component name pattern.

• componentAsrPath(String) matches the component ports with the given component au-
tosar path.

• componentAsrPath(Pattern) matches component ports with the given component autosar
path pattern.

• componentType(String) matches component ports whose component type’s name equals
the given component type name.

• componentType(Pattern) matches component ports whose component type’s name matches
the given component type name pattern.

• componentTypeAsrPath(String) matches the component ports whose component type’s
autosar path equals the given component type autosar path.

© 2025, Vector Informatik GmbH 176 of 387

Chapter 5. AutomationInterface API Reference

• componentTypeAsrPath(Pattern) matches component ports whose component type’s au-
tosar path matches the given component type autosar path pattern.

• portInterfaceMapping(String) matches component ports for whose port interfaces a port
interface mapping with the given port interface mapping name exists.

• portInterfaceMapping(Pattern) matches component ports for whose port interfaces a port
interface mapping with the given port interface mapping name pattern exists.

• portInterfaceMappingAsrPath(String) matches component ports for whose port inter-
faces a port interface mapping with the given port interface mapping autosar path exists.

• portInterfaceMappingAsrPath(Pattern) matches component ports for whose port inter-
faces a port interface mapping with the given port interface mapping autosar path pattern
exists.

• originComponentPortName(String) matches component ports having an origin component
port with the given originPortName. That means the port has an incomplete delegation
connection in the structured extract to a composition port with the given originPortName.

• originComponentPortNames(Collection) matches component ports having an origin com-
ponent port with one of the given originPortNames. That means the port has an incomplete
delegation connection in the structured extract to a composition port with one of the given
originPortNames. The order of the names is not relevant in any kind.

• originComponentPortName(Pattern) matches component ports having an origin compo-
nent port with the given origin port name pattern. That means the port has an incomplete
delegation connection in the structured extract to a composition port with the given origin
port name pattern.

• originComponentPortComponent(String) matches component ports having an origin com-
ponent port with the given originComponentName. That means the port has an incomplete
delegation connection in the structured extract to a composition port whose composition
owner instance has the given originComponentName.

• originComponentPortComponent(Pattern) matches component ports having an origin com-
ponent port with the given origin component name pattern. That means the port has an
incomplete delegation connection in the structured extract to a composition port whose
composition owner instance has the given origin component name pattern.

• hasInnerTopLevelDelegationOriginComponentPort() matches component ports which have
an inner top level origin component port. That means the port in the structured extract
has an incomplete delegation connection which ends at a composition that is instantiated
directly inside the top level composition (ECU Composition).

• diagnosticConnection() narrows down selection to component ports which are derived
from diagnostic mappings. See IComponentPortSelector.hasDiagnosticConnection() for
more details.

diagnosticConnection() cannot be combined with and(Runnable),
or(Runnable) and not(Runnable).
If possible always prefer using diagnosticConnection() over hasDiagnosticConnection()
which can be also combined with not(Runnable), and(Runnable) and or(Runnable) due
to performance reasons.

• hasDiagnosticConnection() matches component ports for which a corresponding diagnos-
tic event port mapping, diagnostic FiM function mapping, diagnostic service data mapping

© 2025, Vector Informatik GmbH 177 of 387

Chapter 5. AutomationInterface API Reference

or a diagnostic service sw mapping exists so that a connection to another port can be derived
from this mapping.

• diagnosticPortRole(EDiagnosticPortRole) matches component ports with the given EDi-
agnosticPortRole.

• filterAdvanced(Predicate) matches component ports for which the given predicate results
to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• put(List) can be used to set SIComponentPorts into the selection. This is the most effi-
cient way to create a selection from existing objects. If further predicates are specified the
predicates will be applied only on the component ports that were given into this put(List)
method. The iteration order is relevant for getting deterministic results on further usage of
the selection API. This method should only be called once.

Examples

scriptTask (" selectAllPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedPorts =
selectComponentPorts {

// no predicates : select ALL component ports
} getComponentPorts ()

scriptLogger .info(" Selected {0} component ports.", selectedPorts .size ())
}

}
}

}

Listing 5.220: Selects all component ports

scriptTask (" selectAllUnconnectedPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedPorts =
selectComponentPorts {

unconnected () // select all unconnected component ports
} getComponentPorts ()

scriptLogger .info(" Selected {0} component ports.", selectedPorts .size ())
}

}
}

}

Listing 5.221: Selects all unconnected component ports

© 2025, Vector Informatik GmbH 178 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" selectAllUnconnectedSRAndConnectedModePorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedPorts =
selectComponentPorts {

// start with logical OR
or {

and { // unconnected sender / receiver ports
unconnected ()
senderReceiver ()

}
and { // connected modeSwitch ports

connected ()
modeSwitch ()

}
}

} getComponentPorts ()
scriptLogger .info(" Selected {0} component ports.", selectedPorts .size ())

}
}

}
}

Listing 5.222: Select all unconnected sender/receiver or connected mode-switch component ports

scriptTask (" selectNotCompletedPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedPorts =
selectComponentPorts {

// this predicate filters for ports
// which needs to be connected and/or a data mapping
notCompleted ()

} getComponentPorts ()
scriptLogger .info(" Selected {0} component ports.", selectedPorts .size ())

}
}

}
}

Listing 5.223: Selects not completed component ports

© 2025, Vector Informatik GmbH 179 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" selectComponentPortsUsingOriginContextPredicates ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// we want to use information from the structured extract to
select flat extract ports

def selectedComponentPorts = selectComponentPorts {
// use component port related predicates
senderReceiver ()
required ()

// combine them with origin context related predicates
// but remember that we are still selecting flat extract ports

here
// we only use the origin context ports as additional criteria

// we want only ports for which the connection ends at the
highest composition level inside the top level composition

// of the structured extract
hasInnerTopLevelDelegationOriginComponentPort ()

// and only ports whose origin context has a special name
pattern for their composition owner instance

originComponentPortComponent (~" Origin .*")
}. getComponentPorts ()

scriptLogger .info(" Selected {0} component ports using their origin
context as additional selection criteria .",

selectedComponentPorts .size ())
}

}
}

}

Listing 5.224: Use origin context predicates for selecting component ports

5.10.4.2 Signal Instance Selection

The system signals and system signal groups to be data-mapped are represented by a signal in-
stance (SIAbstractSignalInstance). SISignalInstance represents a system signal, SISignal-
GroupInstance represents a system signal group. ’Signal instance’ means that the system signal
or system signal group is at least referenced by one ISignal or ISignalGroup. System signals or
system signal groups which are not referenced by an ISignal or ISignalGroup are not represented
as signal instance and so are not available for data mapping.

selectSignalInstances(Action) allows the selection of SIAbstractSignalInstances using pred-
icates.

The signal instance selection can be used to select and filter signal instances and either do further
operations on them, such as map them to communication elements or to just return a list of signal
instances with which you can continue working.

getSignalInstances() allows access to the single signal instances in the ISignalInstanceSe-
lection.

© 2025, Vector Informatik GmbH 180 of 387

Chapter 5. AutomationInterface API Reference

Signal Instance Predicates To select signal instances predicates can be provided to narrow down
the result.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• unmapped() matches signal instances which are not data-mapped.

• mapped() matches signal instances which are data-mapped.

• signalGroup() matches signal instances which are a signal group instance.

• groupSignal() matches signal instances which are a group signal.

• transformed() matches signal instances which are transformation signals.

• tx() matches signal instances whose direction is compatible to EDirection.Tx.

• rx() matches signal instances whose direction is compatible to EDirection.Rx.

• name(String) matches signal instances with the given name.

• names(Collection) matches signal instances with the given names. The order of the names
is not relevant in any kind.

• name(Pattern) matches signal instances with the given name pattern.

• asrPath(String) matches signal instances with the given autosar path.

• asrPaths(Collection) matches signal instances with the given autosar paths. The order
of the names is not relevant in any kind.

• asrPath(Pattern) matches signal instances with the given autosar path pattern.

• iSignal(String) matches signal instances which are referenced at least by one ISignal/ISig-
nalGroup with the given name.

• iSignal(Pattern) matches signal instances which are referenced at least by one ISig-
nal/ISignalGroup with the given name pattern.

• iSignalAsrPath(String) matches signal instances which are referenced at least by one
ISignal/ISignalGroup with the given autosar path.

• iSignalAsrPath(Pattern) matches signal instances which are referenced at least by one
ISignal/ISignalGroup with the given autosar path pattern.

• physicalChannel(String) matches signal instances which are referenced by at least an
ISignal/ISignalGroup for which an ISignalTriggering exists for a PhysicalChannel with the
given name.

• physicalChannel(Pattern) matches signal instances which are referenced by at least an
ISignal/ISignalGroup for which an ISignalTriggering exists for a PhysicalChannel with the
given name pattern.

• physicalChannelAsrPath(String) matches signal instances which are referenced by at least
an ISignal/ISignalGroup for which an ISignalTriggering exists for a PhysicalChannel with
the given autosar path.

• physicalChannelAsrPath(Pattern) matches signal instances which are referenced by at
least an ISignal/ISignalGroup for which an ISignalTriggering exists for a PhysicalChannel
with the given autosar path pattern.

© 2025, Vector Informatik GmbH 181 of 387

Chapter 5. AutomationInterface API Reference

• communicationCluster(String) matches signal instances which are referenced by at least
an ISignal/ISignalGroup which is sent via a PhysicalChannel of a CommunicationCluster
with the given name.

• communicationCluster(Pattern) matches signal instances which are referenced by at least
an ISignal/ISignalGroup which is sent via a PhysicalChannel of a CommunicationCluster
with the given name pattern.

• communicationClusterAsrPath(String) matches signal instances which are referenced by
at least an ISignal/ISignalGroup which is sent via a PhysicalChannel of a Communication-
Cluster with the given autosar path.

• communicationClusterAsrPath(Pattern) matches signal instances which are referenced by
at least an ISignal/ISignalGroup which is sent via a PhysicalChannel of a Communication-
Cluster with the given autosar path pattern.

• pdu(String) matches signal instances which are referenced by at least an ISignal/ISignal-
Group for which an ISignalToIPduMapping exists for a Pdu with the given name.

• pdu(Pattern) matches signal instances which are referenced by at least an ISignal/ISignal-
Group for which an ISignalToIPduMapping exists for a Pdu with the given name pattern.

• pduAsrPath(String) matches signal instances which are referenced by at least an ISig-
nal/ISignalGroup for which an ISignalToIPduMapping exists for a Pdu with the given au-
tosar path.

• pduAsrPath(Pattern) matches signal instances which are referenced by at least an ISig-
nal/ISignalGroup for which an ISignalToIPduMapping exists for a Pdu with the given au-
tosar path pattern.

• frame(String) matches signal instances which are referenced by at least an ISignal/ISig-
nalGroup which is sent via a Pdu for that a PduToFrameMapping exists for a Frame with
the given name.

• frame(Pattern) matches signal instances which are referenced by at least an ISignal/ISig-
nalGroup which is sent via a Pdu for that a PduToFrameMapping exists for a Frame with
the given name pattern.

• frameAsrPath(String) matches signal instances which are referenced by at least an ISig-
nal/ISignalGroup which is sent via a Pdu for that a PduToFrameMapping exists for a Frame
with the given autosar path.

• frameAsrPath(Pattern) matches signal instances which are referenced by at least an ISig-
nal/ISignalGroup which is sent via a Pdu for that a PduToFrameMapping exists for a Frame
with the given autosar path pattern.

• filterAdvanced(Predicate) matches signal instances for which the given lambda results
to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• put(List) can be used to set SIAbstractSignalInstances into the selection. This is the
most efficient way to create a selection from existing objects. If further predicates are specified
the predicates will be applied only on the signal instances that were given into this put(List)

© 2025, Vector Informatik GmbH 182 of 387

Chapter 5. AutomationInterface API Reference

method. The iteration order is relevant for getting deterministic results on further usage of
the selection API. This method should only be called once.

Examples

scriptTask (" SelectAllUnmappedSignalInstances ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def signalInstances =
selectSignalInstances {

unmapped () // select all signal instances which are not yet
data mapped

} getSignalInstances ()
scriptLogger .info(" Selected {0} signal instances .",signalInstances .size ())

}
}

}
}

Listing 5.225: Select all unmapped signal instances

scriptTask (" SelectAllUnmappedRxOrTransformedSignalInstances ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def signalInstances =
selectSignalInstances {

// the signal instances should not be data - mapped yet
unmapped ()
or { // and should either be a rx signal or a transformation

signal
rx()
transformed ()

}
} getSignalInstances ()

scriptLogger .info(" Selected {0} signal instances .",signalInstances .size ())
}

}
}

}

Listing 5.226: Select all unmapped rx or transformed signal instances

© 2025, Vector Informatik GmbH 183 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . instance .
SIAbstractSignalInstance

scriptTask (" SelectSignalInstancesUsingAdvancedFilter ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def signalInstances =
selectSignalInstances {

filterAdvanced { SIAbstractSignalInstance signalInstance ->
// implement own custom filter
def mdfObject = signalInstance . getMdfObject ()
// work on directly on autosar model level ...
// select signal instance only which has admin data
def select = mdfObject . adminData != null
select

}
} getSignalInstances ()

scriptLogger .info(" Selected {0} signal instances .",signalInstances .size ())
}

}
}

}

Listing 5.227: Select signal instances using an advanced filter

5.10.4.3 Communication Element Selection

A data element, an operation or a trigger to be data-mapped is represented by an SICommunica-
tionElement. A data element is represented by the subtype SIDataCommunicationElement, an
operation is represented by the subtype SIOperationCommunicationElement and a trigger is rep-
resented by the subtype SITriggerCommunicationElement. A communication element contains
the full context information (component prototype, port prototype, data type hierarchy) necessary
for data mapping.

selectCommunicationElements(Action) allows the selection of SICommunicationElements using
predicates.

The communication element selection can be used to select and filter communication elements and
either do further operations on them, such as map them to signal instances or to just return a list
of communication elements with which you can continue working.

getCommunicationElements() allows access to the single communication elements in the ICom-
municationElementSelection. Please make sure you are using the correct expansion mode,
see ICommunicationElementSelector.selectFullyExpanded() and ICommunicationElementS-
elector.selectFullyExpandedButPrimitiveArraysAsLeafs().

Communication Element Predicates To select communication elements predicates can be pro-
vided to narrow down the result.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• unconnected() matches communication elements whose component port is unconnected.

• connected() matches communication elements whose component port is connected.

• senderReceiver() matches communication elements whose port has a sender/receiver port
interface.

© 2025, Vector Informatik GmbH 184 of 387

Chapter 5. AutomationInterface API Reference

• clientServer() matches communication elements whose port has a client/server port in-
terface.

• trigger() matches communication elements whose port has a trigger port interface.

• provided() matches communication elements whose port is a provided port (p-port).

• required() matches communication elements whose port is a required port (r-port).

• delegation() matches communication elements whose port is delegation port.

• unmapped() matches communication elements whose are not data-mapped.

• mapped() matches communication elements whose are data-mapped.

• ownerPortTerminated() matches communication elements whose component port is termi-
nated.

• ownerPortNotTerminated() matches communication elements whose component port is not
terminated.

• name(String) matches communication elements with the given data element or operation
name.

• names(Collection) matches communication elements with the given data element or oper-
ation names. The order of the names is not relevant in any kind.

• name(Pattern) matches communication elements with the given data element or operation
name pattern.

• fullyQualifiedName(String) matches communication elements with the given full qualified
communication element name. E.g. ’App1.Port1.DataElement1’, ’ECU Composition.DelegationPort2.DataElement2’.
See also SICommunicationElement.getFullyQualifiedName().

• fullyQualifiedNames(Collection) matches communication elements with the given full
qualified communication element names. E.g. ’App1.Port1.DataElement1’, ’ECU Composi-
tion.DelegationPort2.DataElement2’. See also SICommunicationElement.getFullyQualifiedName().
The order of the names is not relevant in any kind.

• asrPath(String) matches communication elements with the given data element or operation
autosar path.

• asrPath(Pattern) matches communication elements with the given data element or opera-
tion autosar path pattern.

• component(String) matches communication elements with the given component name.

• components(Collection) matches communication elements with the given component names.
The order of the names is not relevant in any kind.

• component(Pattern) matches communication elements with the given component name pat-
tern.

• componentAsrPath(String) matches communication elements with the given component
name autosar path.

• componentAsrPath(Pattern) matches communication elements with the given component
name autosar path pattern.

• port(String) matches communication elements with the given component port name.

© 2025, Vector Informatik GmbH 185 of 387

Chapter 5. AutomationInterface API Reference

• ports(Collection) matches communication elements with the given component port names.
The order of the names is not relevant in any kind.

• port(Pattern) matches communication elements with the given component port name pat-
tern.

• portAsrPath(String) matches communication elements with the given component port
autosar path.

• portAsrPath(Pattern) matches communication elements with the given component port
autosar path pattern.

• filterAdvanced(Predicate) Add a custom predicated which matches communication ele-
ments for which the given lambda results to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• put(List) can be used to set SICommunicationElements into the selection. This is the most
efficient way to create a selection from existing objects. If further predicates are specified
the predicates will be applied only on the communication elements that were given into this
put(List) method. The iteration order is relevant for getting deterministic results on further
usage of the selection API. This method should only be called once.

• selectFullyExpanded() modifies the behavior of the selection. Using this option you are not
only selecting the root communication elements (as you know from the data mapping assistant
in GUI), but also the leafs. See SIDataCommunicationElement.getLeafsFullExpanded()
for more details.

• selectFullyExpandedButPrimitiveArraysAsLeafs() modifies the behavior of the selec-
tion. Using this option you are not only selecting the root communication elements (as you
know from the data mapping assistant in GUI), but also the leafs. Arrays of primitives (e.g.
uint8 arrays) will not be expanded. See SIDataCommunicationElement.getLeafsFullExpandedExceptPrimitiveArrays()
for more details.

Examples

scriptTask (" SelectAllUnmappedDelPortComElements ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def comElements =
selectCommunicationElements {

// select all unmapped delegation communication elements
delegation ()
unmapped ()

} getCommunicationElements ()
scriptLogger .info(" Selected {0} communication elements .",comElements .size

())
}

}
}

}

Listing 5.228: Select all unmapped delegation port communication elements

© 2025, Vector Informatik GmbH 186 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" SelectComplexFullyExpanded ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def comElements =
selectCommunicationElements {

// expand all complex communication elements except primitive
arrays

// and select all communication elements with their leafs
// e.g. for a record we select both here , the record and its

record elements
selectFullyExpandedButPrimitiveArraysAsLeafs ()

} getCommunicationElements ()
scriptLogger .info(" Selected {0} communication elements .",comElements .size

())
}

}
}

}

Listing 5.229: Select all communication elements with their leafs

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. communication . SIDataCommunicationElement
scriptTask (" SelectComElementsUsingAdvancedFilter ", DV_PROJECT){

code {
transaction {

domain . runtimeSystem {
def comElements =

selectCommunicationElements {
// advanced filter :
// only select communication elements
// which represent data elements of a specific data type
filterAdvanced { SICommunicationElement comElement ->

if (comElement instanceof SIDataCommunicationElement) {
def mdfDataElement = comElement . getTargetElement ().

getMdfObject ()
// check directly on autosar model level
return mdfDataElement .type. refTarget .name. equals ("

myCustomDataType ")
}
false

}
} getCommunicationElements ()

scriptLogger .info(" Selected {0} communication elements .",comElements .size
())

}
}

}
}

Listing 5.230: Select communication elements using an advanced filter

5.10.4.4 Component Type Selection

An SIComponentType represents a software component type according to AUTOSAR. It might
define functionality and behavior of a software component in case of an atomic component type,
contain other software components and connections in case of a composition component type or
define parameters and characteristic values in case of a parameter component type.

© 2025, Vector Informatik GmbH 187 of 387

Chapter 5. AutomationInterface API Reference

SIComponent is an instance of a software component type.

selectComponentTypes(Action) allows the selection of SIComponentTypes using predicates.

The component type selection can be used to select and filter component types and either do
further operations on them, such as instantiating them by creating new component prototypes or
to just return a list of component types with which you can continue working.

getComponentTypes() allows access to the single component types in the IComponentTypeSelec-
tion.

Component Type Predicates To select the component types predicates can be provided to nar-
row down the result.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• name(String) matches component types with the given component type name.

• names(Collection) matches component types with the given component type names. The
order of the names is not relevant in any kind.

• name(Pattern) matches component types with the given component type name pattern.

• asrPath(String) matches component types with the given componet type autosar path.

• asrPath(Pattern) matches component types with the given component type autosar path
pattern.

• component(String) matches component types for which a component prototype with the
given component name exists.

• component(Pattern) matches component types for which a component prototype with the
given component name pattern exists.

• application() matches component types which are application component types. Appli-
cation component types are all component types which are not service component types, as
displayed in the ECU Software Components Editor, not ApplicationSwComponentTypes as
defined by AUTOSAR.

• service() matches component types which are service component types.

• parameter() matches component types which are parameter (calibration) component types.

• nvBlock() matches component types which are nv block component types.

• sensorActuator() matches component types which are sensor actuator component types.

• ioHwAbstraction() matches component types which are I/O hardware abstraction compo-
nent types, also called EcuAbstractionSwComponentType.

• complexDeviceDriver() matches component types which are complex device driver compo-
nent types.

• serviceProxy() matches component types which are service proxy component types.

• instantiated() matches component types that are already instantiated. In other words
matches if a component prototype of that component type already exists.

• supportsMultipleInstantiation() matches component types which support multiple in-
stantiation.

© 2025, Vector Informatik GmbH 188 of 387

Chapter 5. AutomationInterface API Reference

• filterAdvanced(Predicate) matches component types for which the given lambda results
to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• put(List) can be used to set SIComponentTypes into the selection. This is the most effi-
cient way to create a selection from existing objects. If further predicates are specified the
predicates will be applied only on the component types that were given into this put(List)
method. The iteration order is relevant for getting deterministic results on further usage of
the selection API. This method should only be called once.

Examples

scriptTask (" selectComponentTypeByName ", DV_PROJECT){
code {

domain . runtimeSystem {
def selectedComponentTypes = selectComponentTypes {

name "App1"
}. getComponentTypes ()

scriptLogger .info(" Selected '{0}' component types.",
selectedComponentTypes .size ())

}
}

}

Listing 5.231: Select component type by name

scriptTask (" selectNotInstantiatedComponentTypes ", DV_PROJECT){
code {

domain . runtimeSystem {
def selectedComponentTypes = selectComponentTypes {

not {
instantiated ()

}
}. getComponentTypes ()

scriptLogger .info(" Selected '{0}' component types.",
selectedComponentTypes .size ())

}
}

}

Listing 5.232: Select not instantiated component types

5.10.4.5 Event Selection

An event SIEvent (called AbstractEvent in AUTOSAR) represents a RTEEvent or a BswEvent.
Events are raised on different conditions and are used to implement application or basic software
in AUTOSAR. (Sometimes they are also called triggers.)

A task mapping (SITaskMapping) represents an SIEvent (also called trigger) that is mapped to
a task in the context of a component prototype or a module configuration. It corresponds to the
task mapping container in the RTE configuration.

selectEvents(Action) allows the selection of SIEvents using predicates.

© 2025, Vector Informatik GmbH 189 of 387

Chapter 5. AutomationInterface API Reference

The event selection can be used to select and filter events and either do further operations on them,
such as mapping the executable entities they trigger to tasks or to just return a list of events or
the task mappings for them with which you can continue working.

getEvents() allows access to the single events in the IEventSelection.

getTaskMappings() retrieves all SITaskMappings for the selected events (see getEvents()).

Note:
1. In case of multi instantiation of component prototypes, the different instances share the same
events, since the event is part of the internal behavior of the component type. Therefore if the
event is selected, getTaskMappings() will always return the task mappings for all component
prototypes.
2. Since this method can be run outside of a transaction, there might be selected events for
which no task mapping container does exist yet. The container cannot be created by calling
getTaskMappings(), so no task mapping can be returned. This happens if the system description
is not synchronized, after changes in the structured extract were done (see Automation Interface
Documentation, chapter about Model Synchronization for examples how to synchronize).

Event Predicates To select the events predicates can be provided to narrow down the result.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• name(String) matches events (triggers) with the given event name.

• names(Collection) matches events (triggers) with the given event names. The order of the
names is not relevant in any kind.

• name(Pattern) matches events (triggers) with the given event name pattern.

• asrPath(String) matches events (triggers) with the given event autosar path.

• asrPath(Pattern) matches events (triggers) with the given event autosar path pattern.

• applicationComponent() matches events (triggers) which belong to an application compo-
nent.

• serviceComponent() matches events (triggers) which belong to a service component.

• component(String) matches events (triggers) which belong to components with the given
component name.

• components(Collection) matches events (triggers) which belong to components with the
given component names. The order of the names is not relevant in any kind.

• component(Pattern) matches events (triggers) which belong to components which matches
the given component name pattern.

• componentType(String) matches events (triggers) which are part of the internal behavior
of component types with the given component type name.

• componentType(Pattern) matches events (triggers) which are part of the internal behavior
of component types which matches the given component type name pattern.

• componentTypeAsrPath(String) matches events (triggers) which are part of the internal
behavior of component types with the given component type autosar path.

© 2025, Vector Informatik GmbH 190 of 387

Chapter 5. AutomationInterface API Reference

• componentTypeAsrPath(Pattern) matches events (triggers) which are part of the internal
behavior of component types whose autosar path matches the given component type autosar
path pattern.

• moduleConfiguration(String) matches events (triggers) which belong to module configu-
rations with the given module configuration name.

• moduleConfigurations(Collection) matches events (triggers) which belong to module
configurations with the given module configuration names. The order of the names is not
relevant in any kind.

• moduleConfiguration(Pattern) matches events (triggers) which belong to module config-
urations which matches the given module configuration name pattern.

• moduleConfigurationAsrPath(String) matches events (triggers) which belong to module
configurations with the given module configuration autosar path.

• moduleConfigurationAsrPath(Pattern) matches events (triggers) which belong to module
configurations whose autosar path matches the given module configuration autosar path
pattern.

• task(String) matches events (triggers) which are mapped to a task with the given task
name.

• task(Pattern) matches events (triggers) which are mapped to a task whose name matches
the given task name pattern.

• bswEvent() matches events (triggers) which are bsw events.

• rteEvent() matches events (triggers) which are rte events.

• unmapped() matches unmapped events (triggers). In case of multi instantiated components/-
modules matches if unmapped at least in one context. Use fullyUnmapped() to determine
whether an event is unmapped in all contexts.

• fullyUnmapped() matches events (triggers) which are not mapped in any context. If no
multi instantiation is used, the result is the same as for unmapped().

• mapped() matches mapped events (triggers). In case of multi instantiated components/mod-
ules matches if mapped at least in one context. Use fullyMapped() to determine whether
an event is mapped in all contexts.

• fullyMapped() matches events (triggers) which are mapped in every context. If no multi
instantiation is used, the result is the same as for mapped().

• timing() matches events which are timing events (triggers).

• timing(Double) matches events (triggers) which are timing events with the given period
(seconds).

• init() matches events (triggers) which are init events.

• dataReceived() matches events (triggers) which are data received events.

• dataReceiveError() matches events (triggers) which are data receive error events.

• dataSendCompleted() matches events (triggers) which are data send completed events.

• dataWriteCompleted() matches events (triggers) which are data write completed events.

• operationInvoked() matches events (triggers) which are operation invoked events.

© 2025, Vector Informatik GmbH 191 of 387

Chapter 5. AutomationInterface API Reference

• operationInvoked(String) matches operation invoked events (triggers) which are invoked
by an operation with the given operationName.

• serverCallReturns() matches events (triggers) which are asynchronous server call returns
events.

• modeSwitch() matches events (triggers) which are mode switch events.

• modeEntry() matches events (triggers) which are mode switch events with activation kind
ON-ENTRY.

• modeExit() matches events (triggers) which are mode switch events with activation kind
ON-EXIT.

• modeTransition() matches events (triggers) which are mode switch events with activation
kind ON-TRANSITION.

• modeSwitchedAck() matches events (triggers) which are mode switched acknowledgement
events.

• externalTrigger() matches events (triggers) which are external trigger occurred events.

• internalTrigger() matches events (triggers) which are internal trigger occurred events.

• background() matches events (triggers) which are background events.

• transformerHardError() matches events (triggers) which are transformer hard error events.

• mandatory() matches events (triggers) which must be mapped. (The mapping of operation
invoked events and bsw events whose schedulable entity has no via symbol matching runnable
is optional.)

• filterAdvanced(Predicate) matches events (triggers) for which the given lambda results
to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• put(List) can be used to set SIEvents into the selection. This is the most efficient way to
create a selection from existing objects. If further predicates are specified the predicates will
be applied only on the events that were given into this put(List) method. The iteration
order is relevant for getting deterministic results on further usage of the selection API. This
method should only be called once.

Examples

© 2025, Vector Informatik GmbH 192 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" selectEvents ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedEvents = selectEvents {
// select all unmapped events of component 'App1 '
unmapped ()
component ("App1")

}. getEvents ()

scriptLogger .info(" Selected '{0}' events .", selectedEvents .size ())
}

}
}

}

Listing 5.233: Select events example

5.10.4.6 Executable Entity Selection

An executable entity (SIExecutableEntity) represents a RunnableEntity or a BswSchedulableEn-
tity. Both are abstractions of executable code in AUTOSAR. (Sometimes they are also called
functions.)

A task mapping (SITaskMapping) represents an SIEvent (also called trigger) that is mapped to
a task in the context of a component prototype or a module configuration. It corresponds to the
task mapping container in the RTE configuration.

selectExecutableEntities(Action) allows the selection of SIExecutableEntitys using predi-
cates.

The executable entity selection can be used to select and filter executable entities and either do
further operations on them, such as mapping them to tasks or to just return a list of executable
entities or the task mappings for them with which you can continue working.

getExecutableEntities() allows access to the single executable entities in the IExecutableEn-
titySelection.

getTaskMappings() retrieves all SITaskMappings for the selected executable entities (see getEx-
ecutableEntities()).

Executable Entity Predicates To select the executable entities predicates can be provided to
narrow down the result.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• symbol(String) matches runnable entities with the given symbol and bsw schedulable en-
tities whose corresponding bsw module entry short name matches the given symbol.

• symbol(Pattern) matches runnable entities whose symbol matches the given symbol pattern
and bsw schedulable entities whose corresponding bsw module entry short name matches the
given symbol pattern.

• name(String) matches executable entities (functions) with the given name.

© 2025, Vector Informatik GmbH 193 of 387

Chapter 5. AutomationInterface API Reference

• names(Collection) matches executable entities (functions) with the given names. The order
of the names is not relevant in any kind.

• name(Pattern) matches executable entities (functions) with the given name pattern.

• asrPath(String) matches executable entities (functions) with the given autosar path.

• asrPath(Pattern) matches executable entities (functions) with the given autosar path pat-
tern.

• applicationComponent() matches executable entities (functions) whose owner is an appli-
cation component.

• serviceComponent() matches executable entities (functions) whose owner is a service com-
ponent.

• component(String) matches executable entities (functions) which belong to components
with the given component name.

• components(Collection) matches executable entities (functions) which belong to compo-
nents with the given component names. The order of the names is not relevant in any kind.

• component(Pattern) matches executable entities (functions) which belong to components
which matches the given component name pattern.

• componentType(String) matches executable entities (functions) which are part of the in-
ternal behavior of component types with the given component type name.

• componentType(Pattern) matches exectuable entities (functions) which are part of the in-
ternal behavior of component types which matches the given component type name pattern.

• componentTypeAsrPath(String) matches executable entities (functions) which are part of
the internal behavior of component types with the given component type autosar path.

• componentTypeAsrPath(Pattern) matches executable entities (functions) which are part of
the internal behavior of component types whose autosar path matches the given component
type autosar path pattern.

• moduleConfiguration(String) matches executable entities (functions) which belong to
module configurations with the given module configuration name.

• moduleConfigurations(Collection) matches executable entities (functions) which belong
to module configurations with the given module configuration names. The order of the names
is not relevant in any kind.

• moduleConfiguration(Pattern) matches executable entities (functions) which belong to
module configurations which matches the given module configuration name pattern.

• moduleConfigurationAsrPath(String) matches executable entities (functions) which be-
long to module configurations with the given module configuration autosar path.

• moduleConfigurationAsrPath(Pattern) matches executable entities (functions) which be-
long to module configurations whose autosar path matches the given module configuration
autosar path pattern.

• task(String) matches executable entities (functions) which have at least one event (trigger)
that is mapped to a task with the given task name.

• task(Pattern) matches executable entities (functions) which have at least one event (trig-
ger) that is mapped to a task whose name matches the given task name pattern.

© 2025, Vector Informatik GmbH 194 of 387

Chapter 5. AutomationInterface API Reference

• bswSchedulableEntity() matches executable entities (functions) which are bsw schedulable
entities.

• runnableEntity() matches executable entities (functions) which are runnable entities.

• unmapped() matches executable entities (functions) with at least one unmapped event (trig-
ger).

• fullyUnmapped() matches executable entities (functions) with all of its events (triggers)
being not mapped in any context to a task.

• mapped() matches executable entities (functions) with at least one mapped event (trigger).

• fullyMapped() matches executable entities (functions) with all of its events (triggers) being
mapped in each context to a task.

• filterAdvanced(Predicate) matches executable entities (functions) for which the given
predicate results to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• put(List) can be used to set SIExecutableEntitys into the selection. This is the most
efficient way to create a selection from existing objects. If further predicates are specified the
predicates will be applied only on the executable entities that were given into this put(List)
method. The iteration order is relevant for getting deterministic results on further usage of
the selection API. This method should only be called once.

Examples

scriptTask (" selectExecutableEntities ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedExecutables = selectExecutableEntities {
// select all runnables with symbol 'MySymbol '
symbol (" MySymbol ")
runnableEntity ()

}. getExecutableEntities ()

scriptLogger .info(" Selected '{0}' executable entities .",
selectedExecutables .size ())

}
}

}
}

Listing 5.234: Select executable entities example

5.10.4.7 Port Interface Selection

A SIPortInterface represents a port interface according to AUTOSAR. A port interface is an
interface that is either provided or required by a port of a software component.

selectPortInterfaces(Action) allows the selection of SIPortInterfaces using predicates.

© 2025, Vector Informatik GmbH 195 of 387

Chapter 5. AutomationInterface API Reference

The port interface selection can be used to select and filter port interfaces and either do further
operations on them, such as instantiating them by creating new delegation port prototypes or to
just return a list of port interfaces with which you can continue working.

getPortInterfaces() allows access to the single port interfaces in the IPortInterfaceSelec-
tion.

Port Interfaces Predicates To select the port interfaces predicates can be provided to narrow
down the result.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• name(String) matches port interfaces with the given port interface name.

• names(Collection) matches port interfaces with the given port interface names. The order
of the names is not relevant in any kind.

• name(Pattern) matches port interfaces with the given port interface name pattern.

• asrPath(String) matches port interfaces with the given port interface autosar path.

• asrPath(Pattern) matches port interfaces with the given port interface autosar path pat-
tern.

• service() matches port interfaces which are service interfaces.

• application() matches port interfaces which are application interfaces.

• senderReceiver() matches port interfaces which are sender receiver interfaces.

• clientServer() matches port interfaces which are client server interfaces.

• modeSwitch() matches port interfaces which are mode switch interfaces.

• nvData() matches port interfaces which are NvData interfaces.

• trigger() matches port interfaces which are trigger interfaces.

• parameter() matches port interfaces which are parameter interfaces.

• componentType(String) first matches all component types with the given component type
name, then retrieves all port interfaces of the component type’s port prototypes.

• componentType(Pattern) first matches all component types with the given component type
name pattern, then retrieves all port interfaces of the component type’s port prototypes.

• componentTypeAsrPath(String) first matches all component types with the given compo-
nent type asr path, then retrieves all port interfaces of the component type’s port prototypes.

• componentTypeAsrPath(Pattern) first matches all component types with the given compo-
nent type asr path pattern, then retrieves all port interfaces of the component type’s port
prototypes.

• component(String) first matches all components with the given component name, then
retrieves all port interfaces of the component’s ports.

• components(Collection) first matches all components with the given component names,
then retrieves all port interfaces of the component’s ports. The order of the names is not
relevant in any kind.

© 2025, Vector Informatik GmbH 196 of 387

Chapter 5. AutomationInterface API Reference

• component(Pattern) first matches all components with the given component name pattern,
then retrieves all port interfaces of the component’s ports.

• componentPort(String) first matches all SIComponentPorts with the given name, then
retrieves all port interfaces of the component ports.

• componentPorts(Collection) first matches all SIComponentPorts with the given names,
then retrieves all port interfaces of the component ports. The order of the names is not
relevant in any kind.

• componentPort(Pattern) first matches all SIComponentPorts with the given name pattern,
then retrieves all port interfaces of the component ports.

• filterAdvanced(Predicate) matches port interfaces for which the given lambda results to
true.

• and(Runnable) combines the predicates inside the runnable with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• put(List) can be used to set SIPortInterfaces into the selection. This is the most effi-
cient way to create a selection from existing objects. If further predicates are specified the
predicates will be applied only on the port interfaces that were given into this put(List)
method. The iteration order is relevant for getting deterministic results on further usage of
the selection API. This method should only be called once.

Examples

scriptTask (" selectPortInterfacesByName ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedPortInterfaces =
selectPortInterfaces {

// selects all sender receiver application port interfaces with
the name 'MyPortInterface '

senderReceiver ()
application ()
name " MyPortInterface "

// getPortInterfaces () will filter all port interfaces for the given
predicates

// so in our example we will receive
// all sender receiver application port interfaces with the short

name 'MyPortInterface '
} getPortInterfaces ()

scriptLogger .info(" Selected {0} port interfaces .", selectedPortInterfaces .
size ())

}
}

}
}

Listing 5.235: Select PortInterface by name and type

© 2025, Vector Informatik GmbH 197 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" selectPortInterfacesByComponentPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedPortInterfaces =
selectPortInterfaces {

// selects the port interface of the port 'pCSPort1 ' of component
'App1 '

componentPort "App1. pCSPort1 "
} getPortInterfaces ()

scriptLogger .info(" Selected {0} port interfaces .", selectedPortInterfaces .
size ())

}
}

}
}

Listing 5.236: Select PortInterfaces by component ports

5.10.4.8 Origin Component Port Selection

Origin Context According to AUTOSAR the flat extract is created out of the structured extract.
During the flattening process, the inner compositions and their ports are lost. However sometimes
the information about this objects is helpful to perform actions on the flat extract, such as for
example connecting ports or doing the data mapping. We call the objects of the structured extract,
which are related to the flat extract objects, origin contexts.

The component port connection provides an option to use the origin context’s names as additional
mapping criteria. This will be introduced below (see 5.10.4.9 on page 208).

Remark: Since the RuntimeSystem-API now works on a flat-view of the StructuredExtract, the
origin-context-APIs are doing the same, but behave as original designed for flat extract usage.

Origin Component Port There is an own model element for the component ports of the struc-
tured extract. A component port (see also SIComponentPort) represents a port prototype and its
corresponding component prototype. The SIOriginComponentPort represents a port in context
of a component prototype for the upstream model (structured extract).

Remark:

The original design of the origin component ports was done for the flattened components of the
structured extract. Since system description SIModel allows working directly on the structured
extract and provides the ISysDescService.getFlatComponentView() as view of the flattened
components (which is used in the RuntimeSystem-APIs), the SIOriginComponentPorts now rep-
resent the SIComponentPorts of the structured extract directly and are interface compatible to
the original design, but do not work on the flat extract anymore.

Further we want to clarify some of the terminology which is used in context of the origin compo-
nent port. The term delegation port is pretty clear for the flat extract, since there are no other
compositions beside the top level composition. However it is possible to instantiate also composi-
tions inside the top level composition and inside other compositions in the structured extract. We
call all ports whose owner is a composition, delegation ports.

Another term used here is the inner top level. Since a project can have only one top level compo-
sition, the first hierarchy level defining the rough structure of the software components is directly

© 2025, Vector Informatik GmbH 198 of 387

Chapter 5. AutomationInterface API Reference

inside the top level composition. So everything directly inside the top level composition is called
the inner top level.

For example if a composition ’MyComposition’ is instantiated directly in the top level composition
and has a port named ’SendData’, so we call the origin component port ’MyComposition.SendData’
an inner top level delegation port. Let’s assume the composition named ’OtherComposition’ has
a port named ’ReceiveData’ and is instantiated in ’ MyComposition’. The origin component port
’OtherComposition.ReceiveData’ is not an inner top level delegation port, since we use this term
only for the hierarchy level inside the top level composition.

selectOriginComponentPorts(Action) allows the selection of SIOriginComponentPorts using
predicates. The origin component ports which are selected here, are ends of incomplete delegation
connections in the structured extract.

The origin component port selection can be used to select and filter origin component ports and
either do further operations on them, such as creating new delegation ports in the flat extract for
them or to just return a list of origin component ports with which you can continue working.

getOriginComponentPorts() allows access to the single origin component ports in the IOrigin-
ComponentPortSelection.

Origin Component Port Predicates To select the origin component ports predicates can be
provided to narrow down the result.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

• name(String) matches origin component ports with the given port name.

• names(Collection) matches origin component ports with the given port names. The order
of the names is not relevant in any kind.

• name(Pattern) matches origin component ports with the given port name pattern.

• asrPath(String) matches origin component ports with the given port autosar path.

• asrPath(Pattern) matches origin component ports with the given port autosar path pat-
tern.

• component(String) matches origin component ports with the given component name.

• components(Collection) matches origin component ports with the given component names.
The order of the names is not relevant in any kind.

• component(Pattern) matches origin component ports with the given component name pat-
tern.

• componentAsrPath(String) matches the origin component ports with the given component
autosar path.

• componentAsrPath(Pattern) matches origin component ports with the given component
autosar path pattern.

• componentType(String) matches origin component ports whose component type’s name
equals the given component type name.

• componentType(Pattern) matches origin component ports whose component type’s name
matches the given component type name pattern.

© 2025, Vector Informatik GmbH 199 of 387

Chapter 5. AutomationInterface API Reference

• componentTypeAsrPath(String) matches origin component ports whose component type’s
autosar path equals the given component type autosar path.

• componentTypeAsrPath(Pattern) matches origin component ports whose component type’s
autosar path matches the given component type autosar path pattern.

• provided() matches provided origin component ports (p-port).

• required() matches required origin component ports (r-port).

• providedRequired() matches provided-required origin component ports (pr-port).

• innerTopLevelDelegation() matches origin component ports on the highest hierarchy level.
In other words the component of the matched ports is instantiated directly inside the top
level composition (ECU Composition).

• ofFlatExtractPort(SIComponentPort) retrieves the origin component ports of the given
flatComponentPort.

• senderReceiver() matches origin component ports whose port has a sender/receiver port
interface.

• clientServer() matches origin component ports whose port has a client/server port inter-
face.

• trigger() matches origin component ports whose port has a trigger port interface.

• filterAdvanced(Predicate) matches origin component ports for which the given predicate
results to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

• completed() matches origin component ports which are completed.

An SIOriginComponentPort is completed if an only if all of its flat extract ports and ad-
ditionally all of the delegation ports which are connected to these flat extract ports are
completed. (See SIComponentPort for definition of completed state for flat extract ports.)

• notCompleted() matches origin component ports which are not completed.

See completed() for the conditions an origin port has to meet to be a completed port.

• put(List) can be used to set SIOriginComponentPorts into the selection. This is the most
efficient way to create a selection from existing objects. If further predicates are specified
the predicates will be applied only on the origin component ports that were given into this
put(List) method. The iteration order is relevant for getting deterministic results on further
usage of the selection API. This method should only be called once.

Examples

© 2025, Vector Informatik GmbH 200 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" selectOriginComponentPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedOriginPorts = selectOriginComponentPorts {
innerTopLevelDelegation ()
provided ()

} getOriginComponentPorts ()

scriptLogger .info(" Selected '{0}' origin component ports.",
selectedOriginPorts .size ())

}
}

}
}

Listing 5.237: Select ends of incomplete connections

scriptTask (" originPortsForFlatExtractPort ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// first we need to find our flat view port
// we will use the component port selection for this example
def componentPort = selectComponentPorts {

name " pDataSend "
component "App1"

} getComponentPorts (). iterator ().next ()

def selectedOriginPorts = selectOriginComponentPorts {
ofFlatExtractPort (componentPort)

} getOriginComponentPorts ()

scriptLogger .info(" Selected '{0}' origin component ports for {1}.",
selectedOriginPorts .size (),
componentPort . getName ())

}
}

}
}

Listing 5.238: Select the ends of incomplete connections for a specific flat view component port

5.10.4.9 Component Port Connection

This chapter is about connecting (a.k.a. mapping) component ports to other component ports.
There are two ways to do that.
The first way is using a the component port selection API (see 5.10.4.1 on page 174) and calling
a method to connect the selected ports to other ports. It is possible to filter the targets and to
evaluate and change by the auto-mapper suggested connections. So this way is similar to the
component connection assistant from the GUI.
The second way is to use a simple API that requires already prepared data structures e.g. two
lists of component ports that are sorted applying certain custom rules and to map them via index
matching. To initially find the appropriate component ports you can use the common selection
APIs.

© 2025, Vector Informatik GmbH 201 of 387

Chapter 5. AutomationInterface API Reference

Auto-Mapping The use case of auto-mapping component ports is based on the selection of com-
ponent ports. The auto-mapper matches component ports using their names.

autoMap() tries to auto-map the selection of component ports according the component connection
assistant default rules.

Examples for autoMap()

scriptTask (" automapAll ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

// no predicates : select ALL component ports
} autoMap ()

scriptLogger .info(" Created {0} mappings .", mappedConnectors .size ())
}

}
}

}

Listing 5.239: Tries to auto-map all ports

scriptTask (" automapAllUnconnected ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

unconnected () // select all unconnected component ports
} autoMap ()

scriptLogger .info(" Created {0} mappings .", mappedConnectors .size ())
}

}
}

}

Listing 5.240: Tries to auto-map all unconnected component ports

scriptTask (" autoMapUnconnectedSRCS ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

// select all unconnected client / server and unconnected sender /
receiver ports

unconnected ()
or {

clientServer ()
senderReceiver ()

}
} autoMap ()

scriptLogger .info(" Created {0} mappings .",mappedConnectors .size ())
}

}
}

}

Listing 5.241: Tries to auto-map all unconnected sender/receiver and client/server ports

© 2025, Vector Informatik GmbH 202 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" autoMapAdvancedfilter ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

// select component port by own custom filter predicate
filterAdvanced { SIComponentPort port ->

" MyUUID ". equals (port. getPort (). getMdfObject (). getUuid2 ())
}

} autoMap ()
scriptLogger .info(" Created {0} mappings .",mappedConnectors .size ())

}
}

}
}

Listing 5.242: Tries to auto-map port determined by advanced filter

autoMapTo(Action) tries to auto-map the selection of component ports according the component
connection assistant rules but offers more control for the auto-mapping: Inside the lambda ad-
ditional predicates for narrowing down the target component ports can be defined and code to
evaluate and change the auto-mapper results can be provided.

Narrowing down the target component ports may be useful to gain better matches for the auto-
mapper: In case several target component ports match equally, no auto-mapping is performed. So
reducing the target component ports may improve the results of the auto-mapping.

The component port selection will produce trace, info and warning logs. To see them, activate the
’IComponentPortSelection’ logger with the appropriate log level.

The provided list of connections will contain all created connections for each connected component
port pair: since some connections need a connection chain through the composition hierarchy this
includes SIDelegationConnectors as well (which are usually not visible in the flat component
view of the structured extract). But it ensures completeness of the result.

Control the auto-mapping in autoMapTo(Closure)

selectTargetPorts(Action) allows to define predicates to narrow down the target ports for the
auto-mapping. The predicates are used to filter the possible target component ports which were
computed from the source component port selection.

© 2025, Vector Informatik GmbH 203 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" autoMapUnconnectedToComponentPrototype ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

unconnected () // select all unconnected ports
} autoMapTo {

selectTargetPorts {
component "App1" // and auto -map them to all ports of

component "App1"
}

}
scriptLogger .info(" Created {0} mappings .",mappedConnectors .size ())

}
}

}
}

Listing 5.243: Tries to auto map all unconnected ports to the ports of one component prototype

evaluateMatches(IMultiAutoMappingEvaluator) allows to evaluate and change the results of
the auto-mapping. It corresponds to the confirm page of the component connection assistant.

For each source component port the provided lambda is called: Parameters are the source compo-
nent port, the optional matched target component port (or null), and a list of all potential target
component ports (respecting the selectTargetPorts(Action) predicates). The return value must
be a list of target component ports.

© 2025, Vector Informatik GmbH 204 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. connector . SISourceComponentPort
import com. vector .cfg. sysdesc .model. connector . SITargetComponentPort

scriptTask (" automapAllUnconnectedAndEvaluateMatches ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

unconnected ()
} autoMapTo {

evaluateMatches {
SISourceComponentPort sourcePort ,
SITargetComponentPort optionalMatchedTargetPort ,
List < SITargetComponentPort > potentialTargetPorts ->

if (sourcePort . getPortName (). equals (" MyExceptionalPort "))
{
// example for excluding a port from auto - mapping by

having a close look
// sourcePort . getMdfPort ()
return null

}
// default : do not change the auto - matched port
[optionalMatchedTargetPort]

}
}

scriptLogger .info(" Created {0} mappings .",mappedConnectors .size ())
}

}
}

}

Listing 5.244: Tries to auto-map all unconnected ports and evaluate matches

© 2025, Vector Informatik GmbH 205 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. connector . SISourceComponentPort
import com. vector .cfg. sysdesc .model. connector . SITargetComponentPort

scriptTask (" anotherExampleForUsingEvaluateMatches ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {
unconnected ()

} autoMapTo {
evaluateMatches {

SISourceComponentPort sourcePort ,
SITargetComponentPort optionalMatchedTargetPort ,
List < SITargetComponentPort > potentialTargetPorts ->

// iterate over potential target ports to find the
correct target

// like in java you can use a for loop
for (SITargetComponentPort targetCP :

potentialTargetPorts) {
if (targetCP . getPortName (). startsWith (" MyPort_ "))

{
return [targetCP]

}
}

// or you can use a stream
def myTargets = potentialTargetPorts . findAll {

it. getPortName (). startsWith (" OtherPort_ ")
}
return myTargets

}
}

scriptLogger .info(" Created {0} mappings .",mappedConnectors .size ())
}

}
}

}

Listing 5.245: Another example for using evaluate matches

© 2025, Vector Informatik GmbH 206 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. connector . SISourceComponentPort
import com. vector .cfg. sysdesc .model. connector . SITargetComponentPort

scriptTask (" automap1ToN ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

// select single delegation port
delegation ()
name " rDelegationSRPort1 "

} autoMapTo {
selectTargetPorts {

// select a collection of target ports (names start with "
rSRPort ")

name ~" rSRPort .*"
}
evaluateMatches {

SISourceComponentPort sourcePort ,
SITargetComponentPort optionalMatchedTargetPort ,
List < SITargetComponentPort > potentialTargetPorts ->

// return all potentialTargetPorts for 1:n connections
, not only the one matched best

potentialTargetPorts
}

}
scriptLogger .info(" Created {0} mappings .",mappedConnectors .size ())

}
}

}
}

Listing 5.246: Auto-map a component port and realize 1:n connection by using evaluate matches

forceConnectionWhen1To1() allows to force a mapping even the usual auto-mapping rules will
not match. Precondition is that the collections of source component ports and target component
ports only contain one component port each. Otherwise no mapping is done.

© 2025, Vector Informatik GmbH 207 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" autoMapTwoNonMatchingPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

// select a single source component port
name " prNVPort1 "
component " NvApp1 "

} autoMapTo {
selectTargetPorts {

// select a single target component port
name " rSRPort2 "
component "App2"

}
// force the connection even names do not match at all
forceConnectionWhen1To1 ()

}
scriptLogger .info(" Created {0} mappings .",mappedConnectors .size ())

}
}

}
}

Listing 5.247: Create mapping between two ports which names do not match.

useOriginContextForMatch() uses another algorithm to match the component ports.
The standard algorithm matches only the names of the ports (delegation port of flat extract or
port of a SWC of the flat extract).
This option uses also the origin context’s name for the name matching.

Incomplete Connections:
Below we will talk about complete and incomplete connections. A connection is complete if the
port of a SWC is connected to another SWC port or to a delegation port of the top level ECU
composition. A connection is incomplete if a SWC port is connected to a delegation port of a
composition which is not the top level ECU composition and the connection stops at this port (the
delegation port is unconnected on the other side).

Origin Context:
Origin contexts of an inner port are delegation ports of the structured extract which are connected
to this port and are the outermost ports of an incomplete connection. Delegation ports of the flat
extract cannot have any origin contexts.

Example:
We want to map the port ’pData’ of ’App1’ of the flat extract. The corresponding component in
the structured extract is instantiated inside the composition ’Comp1’. ’pData’ is connected to the
port ’pOriginContext’ of ’Comp1’. ’pOriginContext’ has no further ports connected to it.
When not using useOriginContextForMatch() option, only ’pData’ would be used for the port
name matching.
When using the useOriginContextForMatch() option, not only (but also) the name ’pData’ is
used for the port name matching, but also the origin context ’pOriginContext’.

© 2025, Vector Informatik GmbH 208 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" mapUsingOriginContext ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def createdConnections = selectComponentPorts {
component (" App1OriginContextMatch ")
name("A")

} autoMapTo {
// this option will not only match the name of the port 'A'
// but also the delegation ports ' names of incomplete connections of

the structured extract
useOriginContextForMatch ()

}

scriptLogger .info(" Created '{0}' connections .", createdConnections .size ())
}

}
}

}

Listing 5.248: Use the origin context for the port name matching

Diagnostic Connections For diagnostic connections (previously created by RTE59002 solving
actions) a special mode can be used while selecting the source component port.

diagnosticConnection() narrows down selection to component ports which are derived from
diagnostic mappings. See IComponentPortSelector.hasDiagnosticConnection() for more de-
tails.

diagnosticConnection() cannot be combined with and(Runnable),
or(Runnable) and not(Runnable).
If possible always prefer using diagnosticConnection() over hasDiagnosticConnection() which
can be also combined with not(Runnable), and(Runnable) and or(Runnable) due to performance
reasons.

This mode has the similar behavior as the diagnostic connections mode in the component connec-
tion assistant. It also creates potential missing port interface mappings.

The enum EDiagnosticPortRole allows to filter ports for the different uses cases:

The EDiagnosticPortRole can be used to determine the role of a port when connecting diagnostic
ports which depends on the used service needs.

© 2025, Vector Informatik GmbH 209 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" connectDiagPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

// activate diagnostic connection mode
// this mode shall not be part of a or {...} , and {...} or not

{...} closure
// hasDiagnosticConnection can be used instead if required , but

is very expensive in terms of performance
diagnosticConnection ()
// further predicates can also be specified here if required

} autoMapTo {
selectTargetPorts {

component "App1" // narrow down selection of target ports
if necessary

}
}

scriptLogger .info(" Created {0} mappings .", mappedConnectors .size ())
}

}
}

}

Listing 5.249: Connects diagnostic ports of App1 based on diagnostic mappings

scriptTask (" connectDiagPortsWithoutNvPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

diagnosticConnection ()
not {

nvData () // exclude nv ports
}

} autoMapTo {
}

scriptLogger .info(" Created {0} mappings . Excluded Nv Ports.",
mappedConnectors .size ())

}
}

}
}

Listing 5.250: Connects diagnostic ports based on diagnostic mappings, excludes Nv Ports

© 2025, Vector Informatik GmbH 210 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model.port. EDiagnosticPortRole

scriptTask (" connectDiagPortsIOControl ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def mappedConnectors =
selectComponentPorts {

diagnosticConnection ()
diagnosticPortRole (EDiagnosticPortRole . IO_CONTROL)

} autoMap ()
scriptLogger .info(" Created {0} mappings for IOControl ports.",

mappedConnectors .size ())
}

}
}

}

Listing 5.251: Connects IOControl ports

Simple API for connection between ports This API covers the use case when the names of
the components and ports which should be connected are known, but the naming rules are too
specific or if you just want to increase the level of control by giving exactly the pairs that should be
mapped into the API. There is one method for connecting exactly one component port to another
and one API for doing multiple connections at once requiring a list of source and a list of target
ports.

componentPort(String, String) allows to select an SIComponentPort and to do further opera-
tions on it, e.g. connecting the port to another port.

ISelectedComponentPort represents a selection of exactly one SIComponentPort and provides
further actions on it.

connectTo(String, String, Optional) creates an SIConnector between the SIComponentPort
which is represented by this ISelectedComponentPort and the SIComponentPort which is re-
trieved by the given component and port name. It is possible to connect the component port to a
delegation port by using ’COMPOSITIONTYPE’ as componentName.

The connectTo(String, String, Optional) returns only one connector, even when the created
connection involves a connection chain instead. Use connectToWithFullConnectorChain(String,
String, Optional) instead for getting the complete connection chain.

The API provides only the very basic checks.

• Direction of the ports is checked. E.g. it is not allowed to connect two PPorts within an
AssemblySwConnector.

• Connecting incompatible types of port interfaces is not allowed. E.g. it is not allowed to
connect a mode switch with a sender receiver port.

• Connecting two delegation ports is not allowed.

• The port interface mapping has to reference the port interfaces of the selected component
ports.

• Connecting a terminated port is not allowed. Please remove the port terminator first. Use
ISelectedComponentPort.removePortTerminator().

© 2025, Vector Informatik GmbH 211 of 387

Chapter 5. AutomationInterface API Reference

• Creating redundant connections is not allowed. The ports cannot be connected by a second
connector.

If you want to use some internal rules other than name matching to connect ports you can apply
this rules to sort a list of source and another list of target ports and then use the simple API below
that connects two lists of ports via index.

connectTo(List) creates SIConnectors between the SIComponentPorts which are represented by
this ISelectedComponentPorts with the given targetPorts. The ports are connected using the
index. The first port of this ISelectedComponentPorts will be connected to the first target port,
the second to the second target port and so on.

In case you want to ignore already connected port pairs please use assureConnectedTo(List).

If you want to connect ports using name matching please use IRuntimeSystemApi.selectComponentPorts(Action).

assureConnectedTo(List) checks whether the SIComponentPorts represented by this ISelect-
edComponentPorts are already connected to the given targetPorts matching them via index. In
contrast to connectTo(List) this method does nothing if the ports are already connected. If the
ports are not connected a new connector will be created.

Examples

import java.util. Optional

scriptTask (" assemblyConnectionExample ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// enter component and port name of a component port and the
component port to connect it to

// optionally you can add a port interface mapping
def createdConnector = componentPort ("App1", " pDataSend ").

connectTo ("App2", " rSRPort2 ", Optional .empty ())

scriptLogger .info(" Created a connection between '{0}' and '{1} '.",
createdConnector . getProviderPort (). getName (),
createdConnector . getRequesterPort (). getName ())

}
}

}
}

Listing 5.252: Example how to create a simple assembly connection

© 2025, Vector Informatik GmbH 212 of 387

Chapter 5. AutomationInterface API Reference

import java.util. Optional

scriptTask (" delegationConnectionExample ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// to select a delegation port the name of the ECU Composition is
used as component name

def createdConnector = componentPort (" COMPOSITIONTYPE ", "
rDelegationSRPort1 "). connectTo ("App2", " rSRPort2 ", Optional .
empty ())

// the provided and required port getter work also for delegation
connections

// you can find more info in the java doc of IConnector
scriptLogger .info(" Created a connection between '{0}' and '{1} '.",
createdConnector . getProviderPort (). getName (),
createdConnector . getRequesterPort (). getName ())

}
}

}
}

Listing 5.253: Example how to create a simple delegation connection

import java.util. Optional

scriptTask (" delegationConnectionExample ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def portInterfaceMappingPath = "/ ComponentTypes /
DataTypeMappingSets / PortInterfaceMappingSet1 / Mapping1 "

// to add a port interface mapping to the connection , use an
optional with the AUTOSAR path to the port interface mapping

def createdConnector = componentPort (" COMPOSITIONTYPE ", "
pDelegationSRPort2 "). connectTo ("App1", " pSRPort1 ", Optional .of
(portInterfaceMappingPath))

scriptLogger .info(" Created a connection between '{0}' and '{1} '.",
createdConnector . getProviderPort (). getName (),
createdConnector . getRequesterPort (). getName ())

}
}

}
}

Listing 5.254: Create connector with port interface mapping

© 2025, Vector Informatik GmbH 213 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. connector . SIConnector
import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" UseSimpleAPIToCreateMultipleConnections ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we know for each port the target port (for
example stored in some external file)

// and we know that the names of source and target ports do not
always match

// so we use the simple API instead of the auto mapping
List <String > sourcePortNames = ["App1. pDataSend ",

"App1. pNvPort1 ",
"App1. pCSPort1 "]

List <String > targetPortNames = ["ECU Composition .
pDelegationSRPort2 ",

"App2. rNVPort1 ",
"App3. rOtherPort1CS "]

// retrieve the component ports for the names
List < SIComponentPort > sourcePorts = new ArrayList < SIComponentPort

>(selectComponentPorts {
componentPortNames (sourcePortNames)

}. getComponentPorts ())

// since our used predicate does not guarantee any order , we have
to sort our ports to assure they are in correct order

// because the connections below will be created matching index of
source and target ports

sourcePorts .sort{a,b -> sourcePortNames . indexOf (a. getName ()) <=>
sourcePortNames . indexOf (b. getName ())}

// do the same for the target ports
List < SIComponentPort > targetPorts = new ArrayList < SIComponentPort

>(selectComponentPorts {
componentPortNames (targetPortNames)

}. getComponentPorts ())

targetPorts .sort{a,b -> targetPortNames . indexOf (a. getName ()) <=>
targetPortNames . indexOf (b. getName ())}

// we just want to make sure that the ports are connected
// so we use assureConnectedTo (...) instead of connectTo (...)
// in other words we do not care , which ports are already

connected
List < SIConnector > newConnectors = componentPorts (sourcePorts).

assureConnectedTo (targetPorts)

// finally do some reporting for the port pairs that were
unconnected

for (SIConnector connector in newConnectors) {
scriptLogger .info(" Connected {0} to {1}.",

connector . getProviderPort (). getName (),
connector . getRequesterPort (). getName ())

}
}

}
}

}

Listing 5.255: Connect ports using simple API

© 2025, Vector Informatik GmbH 214 of 387

Chapter 5. AutomationInterface API Reference

5.10.4.10 Disconnect (unmap) Component Ports

The previous chapter was about connecting component ports. Now we want to have a look how
to remove such connections again. We call it unmapping component ports.
This can be done using the component port selection API (see 5.10.4.1 on page 174) and calling
a method to unmap the selected ports from other ports. It is possible to filter and evaluate the
targets, so that you can have the control also for 1:n or n:m connected ports.

Unmapping Component Ports The use case of unmapping component ports is based on the
selection of component ports. The targets are the ports which are connected to the selected
port.

unmap() unmaps the selected component ports of this selection from ALL connected ports. In
case that not all connections shall be removed the targets can be narrowed down using un-
mapFrom(Action).

Examples for unmap()

import com. vector .cfg.dom. runtimesys .pai.api. IUnmappedPortsResult

scriptTask (" unmapComponentPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def unmappedPorts =
selectComponentPorts {

// select the component ports to be unmapped
connected ()
componentPortName ("App1. pDataSend ")

} unmap ()

// the simple 'unmap ()' removes all connectors connecting the selected
component ports to any other ports

// now print info of for the component ports that were unmapped from each
other

// the data structure is a pair representing the source and the target
port which were unmapped

for (final IUnmappedPortsResult unmappedPortPair : unmappedPorts) {
scriptLogger .info(" Removed connector between {0} -> {1}.",

unmappedPortPair . getSourcePort (). getName (),
unmappedPortPair . getTargetPort (). getName ())

}
}

}
}

}

Listing 5.256: Remove Connectors between Component Ports

Control unmapping in unmapFrom(Closure)

selectTargetPorts(Action) allows to define predicates to narrow down the target ports which
shall be disconnected from the in previous step selected ports.

evaluateMatches(IUnmappingEvaluator) allows to evaluate and change the results of the un-
mapped component ports.

© 2025, Vector Informatik GmbH 215 of 387

Chapter 5. AutomationInterface API Reference

For each selected component port the provided lambda is called: Parameters are the current
handled component port and a list of all connected target component ports (respecting the se-
lectTargetPorts(Action) predicates). The return value must be a list of component ports which
are connected to the current handled source port.

import com. vector .cfg.dom. runtimesys .pai.api. IUnmappedPortsResult
import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" unmapComponentPorts ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def unmappedPorts =
selectComponentPorts {

// select the component ports to be unmapped
connected ()
componentPortName (" App1OriginContextMatch .

CompletedOriginPortTest ")
} unmapFrom {

// the connected (or target) ports can be filtered in this
closure

selectTargetPorts {
componentPortNames (["App1. ConnectedToCompletedOriginTest ",

" App1_1 . ConnectedToCompletedOriginTest "])
}

// additionally the target matches to be unmapped can be
evaluated

// the 'targetPorts ' below are all ports connected to the '
sourcePort ' considering the 'selectTargetPorts ' call above

evaluateMatches { SIComponentPort sourcePort , List <
SIComponentPort > targetPorts ->

// in our example we want to unmap the source ports only from
ports of the component 'App1_1 '

targetPorts .each {
if (it. getComponent (). getName (). equals (" App1_1 ")) {

return [it]
}

}
}

}

// print info for newly unmapped ports
for (final IUnmappedPortsResult unmappedPortPair : unmappedPorts) {

scriptLogger .info(" Removed connector between {0} -> {1}.",
unmappedPortPair . getSourcePort (). getName (),
unmappedPortPair . getTargetPort (). getName ())

}
}

}
}

}

Listing 5.257: Remove Connectors between Component Ports Filtering Targets

5.10.4.11 Terminating Component Ports

Port terminators can be used to acknowledge the fact, that the port is not connected yet. This
will prevent validation rules to produce validation results reporting these ports as unconnected or
missing data mappings for these ports. It also allows you to filter such ports very easily using the

© 2025, Vector Informatik GmbH 216 of 387

Chapter 5. AutomationInterface API Reference

according predicates of the selection APIs.

Starting point is the component port selection (see 5.10.4.1 on page 174).

terminate() terminates all selected SIComponentPorts. If one of the selected ports is already
terminated or connected to another component port, the port will be ignored.

The termination of component ports disables the validation of these ports. In other words, these
ports are acknowledged as not connected yet. This should give a better overview of the open ports,
which still have to be connected or need a data mapping.

removePortTerminators() removes the port terminators of all selected component ports. If one
of the selected component ports is not terminated the method will ignore that port.

See terminate() for more information about the purpose of terminating ports.

It is also possible to create and remove port terminators via the simple API starting with the
selection of one component port (componentPort(String, String)).

terminate() simple API to terminate the selected SIComponentPort if it is not already terminated
or connected to another component port. You can use SIComponentPort.isTerminated() to
check if a port is terminated and SIComponentPort.isConnected() if a port is connected to other
ports.

The termination of component ports disables the validation of these ports. In other words, these
ports are acknowledged as not connected yet. This should give a better overview of the open ports,
which still have to be connected or need a data mapping.

removePortTerminator() simple API to remove the port terminator of the selected component
port.

See terminate() for more information about the purpose of terminating ports.

Examples

© 2025, Vector Informatik GmbH 217 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" terminatePort ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// the statements below will return us a collection with all component
ports which will be terminated

def terminatedPorts =
selectComponentPorts {

delegation ()
name(" pDelegationCSPort1 ")

// use terminate () to terminate all selected component ports
// if a selected port is already terminated or connected , it will not

be terminated (again)
} terminate ()

// this result may contain less ports than the actual selected ports ,
// if some of the selected ports were connected or terminated
for (final SIComponentPort terminatedPort : terminatedPorts) {

scriptLogger .info(" Terminated component port '{0} '.", terminatedPort .
getName ())

}
}

}
}

}

Listing 5.258: Terminate port using the component port selection API

import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" removePortTerminator ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// the statements below will return us a collection with all component
ports for which a port terminator was removed

def removedPortTerminators =
selectComponentPorts {

// filter for all terminated delegation ports
delegation ()
// there are predicates to filter for terminated () and

notTerminated () ports
terminated ()

// if a port is not terminated it will be skipped
} removePortTerminators ()

// the result may contain less component ports than the selection ,
// if some of the ports were not terminated
for (final SIComponentPort componentPort : removedPortTerminators) {

scriptLogger .info(" Removed port terminator of component port '{0} '.",
componentPort . getName ())

}
}

}
}

}

Listing 5.259: Remove port terminator using the component port selection API

© 2025, Vector Informatik GmbH 218 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" createPortTerminator ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// select the component port via the simple API and call terminate ()
// this API is more strict and throws an exception if the selected port

cannot be terminated
def terminatedPort = componentPort (" COMPOSITIONTYPE ", " rDelegationSRPort1 "

). terminate ()

scriptLogger .info(" Terminated component port '{0} '.", terminatedPort .
getName ())

}
}

}
}

Listing 5.260: Create a port terminator using the simple API

scriptTask (" removePortTerminator ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// select the component port via the simple API and call terminate ()
// this API is more strict and throws an exception if the selected port

has no port terminator to remove
def removedTerminatorPort = componentPort (" App1_1 ", " pSRPort1 ").

removePortTerminator ()

scriptLogger .info(" Terminated component port '{0} '.",
removedTerminatorPort . getName ())

}
}

}
}

Listing 5.261: Remove a port terminator using the simple API

Terminating Component Ports of Communication Elements As already mentioned above port
terminators can be used to acknowledge the fact, that the port is not connected yet. It is possible
to terminate owner ports of communication elements using the communication element selec-
tion.

terminateOwnerPorts() terminates the SIComponentPorts of all selected SICommunicationEle-
ments. If one of the selected ports is already terminated or connected to another component port,
the port will be ignored.

The termination of component ports disables the validation of these ports. In other words, these
ports are acknowledged as not connected yet. This should give a better overview of the open ports,
which still have to be connected or need a data mapping.

removePortTerminatorsForOwnerPorts() removes the port terminators of the SIComponent-
Ports of all selected SICommunicationElements.

See terminateOwnerPorts() for more information about the purpose of terminating ports.

Examples

© 2025, Vector Informatik GmbH 219 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" terminatePort ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// the the statements below will return us a collection with all component
ports which will be terminated

def terminatedPorts =
selectCommunicationElements {

// also for the communication elements there are predicates to
filter for terminated owner ports

ownerPortNotTerminated ()
port(" pSRPort1 ")

// this call will terminate the component port owner of each selected
communication element

} terminateOwnerPorts ()

// if multiple communication elements has the same component port owner
// the component port will be terminated and returned only once
for (final SIComponentPort terminatedPort : terminatedPorts) {

scriptLogger .info(" Terminated component port '{0} '.", terminatedPort .
getName ())

}
}

}
}

}

Listing 5.262: Terminate port using the communication element selection API

import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" removePortTerminator ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// the statements below will return us a collection with all component
ports for which a port terminator was removed

def removedPortTerminators =
selectCommunicationElements {

component (" App1_1 ")
port(" pSRPort1 ")

// if a port is not terminated it will be skipped
} removePortTerminatorsForOwnerPorts ()

for (final SIComponentPort componentPort : removedPortTerminators) {
scriptLogger .info(" Removed port terminator of component port '{0} '.",

componentPort . getName ())
}

}
}

}
}

Listing 5.263: Remove port terminator using the communication element selection API

© 2025, Vector Informatik GmbH 220 of 387

Chapter 5. AutomationInterface API Reference

5.10.4.12 Data Mapping

The data mapping use case allows to connect signal instances and data elements / operations /
triggers. We will introduce two ways for that.
The first one will be using a selection API allowing to define predicates to filter communication
elements/signals for the data mapping and calling a method to filter the target signals/communi-
cation elements. This is the way to map communication elements to system signals in a way like
the data mapping assistant from the GUI. See 5.10.4.3 on page 184 and 5.10.4.2 on page 180 for
the selection starting points.
The second way is to use a simple API that requires already prepared data structures e.g. a
list of communication elements and a list of signal instances. To initially find the appropriate
communication elements and signals you can use the common selection APIs.

Mapping signal instances The use case of auto-mapping signal instances is based on the selection
of signal instances.

autoMap() tries to auto-map the selection of SIAbstractSignalInstances (SISignalInstance
or SISignalGroupInstance) according the data mapping assistant default rules. Therefore the
selection of possible target communication elements is computed and tried to match to the selected
signal instances.

Examples for autoMap()

scriptTask (" autoDatamapAllUnmappedSignalInstances ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def dataMappings =
selectSignalInstances {

unmapped ()
} autoMap ()

scriptLogger .info(" Created {0} data mappings .",dataMappings .size ()
)

}
}

}
}

Listing 5.264: Auto data map all unmapped signal instances

autoMapTo(Action) tries to auto-map the selection of signal instances according the data mapping
assistant rules but offers more control for the auto-mapping: Inside the lambda additional predi-
cates for narrowing down the target communication elements can be defined and code to evaluate
and change the auto-mapper results can be provided.

autoMapTo(Action) will produce trace, info and warning logs. To see them, activate the ’com.vector.cfg.dom.runtimesys.pai.api.ISignalInstanceSelection’
logger with the appropriate log level.

Control the auto-mapping in autoMapTo(Closure)

selectTargetCommunicationElements(Action) allows to define predicates to narrow down the
target communciation elements for the auto-mapping. The predicates are used to filter the possible
target communication elements which were computed from the signal instance selection.

evaluateMatches(IAutoMappingEvaluator) allows to evaluate and change the results of the auto-
mapping. It corresponds to the confirm page of the data mapping assistant.

© 2025, Vector Informatik GmbH 221 of 387

Chapter 5. AutomationInterface API Reference

For each signal instance the provided lambda is called: Parameters are the signal instance, the
optional matched target communication element (or null), and a list of all potential target com-
munication elements (respecting the selectTargetCommunicationElements(Action) predicates).
The return value must be a communication element or null.
import com. vector .cfg. sysdesc .model. communication . instance .

SIAbstractSignalInstance
import com. vector .cfg. sysdesc .model. communication . SICommunicationElement

scriptTask (" autoDatamapAllUnmappedSignalInstancesAndEvaluate ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def dataMappings =
selectSignalInstances {

unmapped ()
} autoMapTo {

selectTargetCommunicationElements {
unmapped ()

}
evaluateMatches {

SIAbstractSignalInstance signal ,
SICommunicationElement optionalMatchedComElement ,
List < SICommunicationElement > potentialComElements ->

// evaluate
optionalMatchedComElement

}
}

scriptLogger .info(" Created {0} data mappings .",dataMappings .size ()
)

}
}

}
}

Listing 5.265: Auto data map all unmapped signal instances to unmapped communication elements
and evaluate

Nested Array of Primitives expandNestedArraysOfPrimitive(boolean) allows to control the
expansion of nested arrays of primitive globally. Per default, arrays are fully expanded (allowing
to data map each array element). By setting the value to ’false’, all nested arrays of primitive are
not expanded and can be directly data-mapped to a signal.

© 2025, Vector Informatik GmbH 222 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . instance .
SIAbstractSignalInstance

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement

scriptTask (" autoDatamapAllSignalInstancesAndDoNotExpandNestedArrayElements ",
DV_PROJECT){

code {
transaction {

domain . runtimeSystem {
def dataMappings =

selectSignalInstances {
} autoMapTo {

// do not expand nested array elements
expandNestedArraysOfPrimitive false
evaluateMatches {

SIAbstractSignalInstance signal ,
SICommunicationElement optionalMatchedComElement ,
List < SICommunicationElement > potentialComElements ->

// perform manual mapping to a signal group
if (signal . getName (). equals (" elemB_c255f5e38fd8b21d ")) {

for (final SICommunicationElement comElement :
potentialComElements) {

if (comElement . getFullyQualifiedName (). equals ("App2. rSRPort1 .
Element_2 ")) {

return comElement
}

}
}
// now check: for the group signal the the record element

representing an array is not expanded
if (signal . getName (). equals (" fieldA_f1d3783e235e88d3 ")) {

// group signal
for (final SICommunicationElement comElement :

potentialComElements) {
if (comElement . getFullyQualifiedName (). equals ("App2. rSRPort1 .

Element_2 . RecordElement ")) {
// do some direct mapping here

}
}

}
optionalMatchedComElement

}
}

scriptLogger .info(" Created {0} data mappings .",dataMappings .size ())
}

}
}

}

Listing 5.266: Auto data map all signal instances and do not expand nested array elements

expandNestedArraysOfPrimitive(String,boolean) allows to control the expansion of nested
arrays of primitive for single nested arrays. Per default, the expandNestedArraysOfPrimi-
tive(boolean) applies. For the given fully qualified communication element name, the global
setting can be overridden.

© 2025, Vector Informatik GmbH 223 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . instance .
SIAbstractSignalInstance

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement

scriptTask (" autoDatamapAllSignalInstancesAndDoExpandSpecificNestedArrayElement ",
DV_PROJECT){

code {
transaction {

domain . runtimeSystem {
def dataMappings =

selectSignalInstances {
} autoMapTo {

// do not expand nested array elements
expandNestedArraysOfPrimitive false
expandNestedArraysOfPrimitive ("App2. rSRPort1 . Element_2 .

RecordElement ",true)
evaluateMatches {

SIAbstractSignalInstance signal ,
SICommunicationElement optionalMatchedComElement ,
List < SICommunicationElement > potentialComElements ->

// perform manual mapping to a signal group
if (signal . getName (). equals (" elemB_c255f5e38fd8b21d ")) {

for (final SICommunicationElement comElement :
potentialComElements) {

if (comElement . getFullyQualifiedName (). equals ("App2. rSRPort1 .
Element_2 ")) {

return comElement
}

}
}
// now check: for the group signal the the record element

representing an array is expanded :
// the single array elements can be mapped
if (signal . getName (). equals (" fieldA_f1d3783e235e88d3 ")) {

// group signal
for (final SICommunicationElement comElement :

potentialComElements) {
if (comElement . getFullyQualifiedName (). equals ("App2. rSRPort1 .

Element_2 . RecordElement [0]")) {
// do some direct mapping to array element here

}
}

}
optionalMatchedComElement

}
}

scriptLogger .info(" Created {0} data mappings .",dataMappings .size ())
}

}
}

}

Listing 5.267: Auto data map all signal instances and expand specific nested array element

evaluateMatchesWithCompatibility(IAutoMappingEvaluatorWithCompatibility) allows to eval-
uate and change the results of the auto-mapping. It corresponds to the confirm page of the data
mapping assistant. In contrast to evaluateMatches(IAutoMappingEvaluator) this method also
provides the compatibility of the optional match.

For each signal instance the provided lambda is called: Parameters are the signal instance, the op-
tional matched target communication element (or null), their compatibility and a list of all potential

© 2025, Vector Informatik GmbH 224 of 387

Chapter 5. AutomationInterface API Reference

target communication elements (respecting the selectTargetCommunicationElements(Action)
predicates). The return value must be a communication element or null.

import com. vector .cfg. sysdesc .model. communication . ECompatibility
import com. vector .cfg. sysdesc .model. communication . instance .

SIAbstractSignalInstance
import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. datamapping . SIDataMapping

scriptTask (" evaluateCommunicationElementsByCompatibility ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we want to accept full matches for data mapping
// and apply some custom rules for non -full matches

List < SIDataMapping > createdMappings = selectSignalInstances {
unmapped ()

} autoMapTo {
evaluateMatchesWithCompatibility {

SIAbstractSignalInstance signal ,
SICommunicationElement optionalMatchedCommunicationElement

,
ECompatibility compatibility ,
List < SICommunicationElement > potentialComElements ->

if (compatibility == ECompatibility .FULL) {
return optionalMatchedCommunicationElement

}
// for non -full matches we return the first potential

match if present
if (potentialComElements .size () > 0) {

return potentialComElements .get (0)
}
return null

}
}

scriptLogger .info(" Created {0} data mappings .", createdMappings .
size ())

}
}

}
}

Listing 5.268: Evaluate matched communication elements using compatibility

confirmByCompatibility(IAutoMappingConfirmation) allows to evaluate the mappings which
should be created.

For each signal instance the provided lambda is called: Parameters are the signal instance,
the optional matched target communication element (or null) and the compatibility of them
(ECompatibility.NULL if no optional match present) respecting all previous evaluations. So this
is the final verifying step to confirm or reject the mapping. The return value must be true if the
mapping should be created or false if you want to reject the mapping.

© 2025, Vector Informatik GmbH 225 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . ECompatibility
import com. vector .cfg. sysdesc .model. communication . instance .

SIAbstractSignalInstance
import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. datamapping . SIDataMapping

scriptTask (" confirmMappingToComElementByCompatibility ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we want only to accept data mappings with a
full match

// and report all other

List < SIDataMapping > createdMappings = selectSignalInstances {
unmapped ()

} autoMapTo {
confirmByCompatibility {

SIAbstractSignalInstance signal ,
SICommunicationElement optionalMatchedCommunicationElement

,
ECompatibility compatibility ->

if (compatibility == ECompatibility .FULL) {
// accept full match

return true
}

if (optionalMatchedCommunicationElement != null) {
// report non -full matches
scriptLogger .info(" Compatibility {0} between signal

{1} and communication element {2}.",
compatibility ,
signal . getName (),
optionalMatchedCommunicationElement .

getFullyQualifiedName ())
} else {

// report signals for which the auto mapper could not
find a match

scriptLogger .info("No match for signal {0}.",
signal . getName ())

}
return false

}
}

scriptLogger .info(" Created {0} data mappings .", createdMappings .
size ())

}
}

}
}

Listing 5.269: Decide which mappings should be created by compatibility

Mapping communication elements autoMap() tries to auto-map the selection of SICommunica-
tionElements (SIDataCommunicationElement or SIOperationCommunicationElement) accord-
ing the data mapping assistant default rules. Therefore the selection of possible target signal
instances is computed and tried to match to the selected communication elements. You do not

© 2025, Vector Informatik GmbH 226 of 387

Chapter 5. AutomationInterface API Reference

have to expand the communication elements in the previous selection step. They will be expanded
after the root is mapped automatically as you know from the data mapping assistant.

Examples for autoMap()

scriptTask (" autoDatamapAllUnmappedSRDelPortComElements ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def dataMappings =
selectCommunicationElements {

// select all unmapped sender / receiver delegation ports
delegation ()
unmapped ()
senderReceiver ()

} autoMap ()
scriptLogger .info(" Created {0} data mappings .",dataMappings .size ())

}
}

}
}

Listing 5.270: Auto data map all unmapped sender/receiver delegation port communication
elements

autoMapTo(Action) tries to auto-map the selection of communication elements according the
data mapping assistant rules but offers more control for the auto-mapping: Inside the lambda
additional predicates for narrowing down the target signal instances can be defined and code to
evaluate and change the auto-mapper results can be provided. You do not have to expand the
communication elements in the previous selection step. They will be expanded after the root is
mapped automatically as you know from the data mapping assistant.

autoMapTo(Action) will produce trace, info and warning logs. To see them, activate the

’com.vector.cfg.dom.runtimesys.pai.api.ICommunicationElementSelection’

logger with the appropriate log level.

Control the auto-mapping in autoMapTo(Closure)

selectTargetSignalInstances(Action) allows to define predicates to narrow down the target
signal instances for the auto-mapping. The predicates are used to filter the possible target signal
instances which were computed from the communication element selection.

evaluateMatches(IAutoMappingEvaluator) allows to evaluate and change the results of the auto-
mapping. It corresponds to the confirm page of the data mapping assistant.

For each communication element the provided lambda is called: Parameters are the communication
element, the optional matched target signal instance (or null), and a list of all potential target
signal instances (respecting the selectTargetSignalInstances(Action) predicates). The return
value must be a signal instance or null.

© 2025, Vector Informatik GmbH 227 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . instance .
SIAbstractSignalInstance

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement

scriptTask (" autoDatamapAllUnmappedComElementsAndEvaluate ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def dataMappings =
selectCommunicationElements {

unmapped () // only unmapped communication elements
} autoMapTo {

selectTargetSignalInstances {
// only map to unmapped rx signal instances
unmapped ()
rx()

}

// we selected only the root communication elements , but for
performing the data mapping the complex data elements are
expanded

// this is a behavior which you can also notice in the data
mapping assistant in the GUI

// that means the evaluateMatches method will also offer child
communication elements and the corresponding matched group
signals

evaluateMatches {
SICommunicationElement communicationElement ,
SIAbstractSignalInstance optionalMatchedSignalInstance ,
List < SIAbstractSignalInstance > potentialSignalinstances ->

// evaluate the match here
if (optionalMatchedSignalInstance != null) {

def mdfSystemSignal =
optionalMatchedSignalInstance . getMdfObject ()

// check more specific ...
}
optionalMatchedSignalInstance

}
}

scriptLogger .info(" Created {0} data mappings .", dataMappings .size ())
}

}
}

}

Listing 5.271: Auto data map all unmapped communication elements to unmapped rx signal
instances and evaluate

Nested Array of Primitives expandNestedArraysOfPrimitive(boolean) allows to control the
expansion of nested arrays of primitive globally. Per default, arrays are fully expanded (allowing
to data map each array element). By setting the value to ’false’, all nested arrays of primitive are
not expanded and can be directly data-mapped to a signal.

© 2025, Vector Informatik GmbH 228 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . instance .
SIAbstractSignalInstance

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. communication . instance . SISignalGroupInstance

scriptTask (" autoDatamapDoNotExpandNestedArrayElements ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def dataMappings =
selectCommunicationElements {
} autoMapTo {

expandNestedArraysOfPrimitive false // do not expand nested arrays of
primitive

evaluateMatches {
SICommunicationElement communicationElement ,
SIAbstractSignalInstance optionalMatchedSignalInstance ,
List < SIAbstractSignalInstance > potentialSignalInstances ->

if ("App2. rSRPort1 . Element_2 ". equals (communicationElement .
getFullyQualifiedName ())) {
// manual matching : map to first signal group
for (SIAbstractSignalInstance potentialSignal :

potentialSignalInstances) {
if (potentialSignal instanceof SISignalGroupInstance)

{
return potentialSignal

}
}

}
if ("App2. rSRPort1 . Element_2 . RecordElement ". equals (

communicationElement . getFullyQualifiedName ())) {
// now the RecordElement which represents an array is

directly offered to map
//

}
optionalMatchedSignalInstance

}
}

scriptLogger .info(" Created {0} data mappings .",dataMappings .size ())
}

}
}

}

Listing 5.272: Autodatamap and do not expand nested array elements

expandNestedArraysOfPrimitive(String,boolean) allows to control the expansion of nested
arrays of primitive for single nested arrays. Per default, the expandNestedArraysOfPrimi-
tive(boolean) applies. For the given fully qualified communication element name, the global
setting can be overridden.

The fully qualified communication element name is e.g. determinable when using the data mapping
assistant, performing an arbitrary signal group mapping of the root data element, and using the
right-mouse menu its ’Copy fully qualified name’ action on the nested array element.

© 2025, Vector Informatik GmbH 229 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . instance .
SIAbstractSignalInstance

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. communication . instance . SISignalGroupInstance

scriptTask (" autoDatamapDoExpandSpecificNestedArrayElement ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def dataMappings =
selectCommunicationElements {
} autoMapTo {

// do not generally expand nested arrays of primitive
expandNestedArraysOfPrimitive false
// but expand the following specific record element
expandNestedArraysOfPrimitive ("App2. rSRPort1 . Element_2 .

RecordElement ",true)
evaluateMatches {

SICommunicationElement communicationElement ,
SIAbstractSignalInstance optionalMatchedSignalInstance ,
List < SIAbstractSignalInstance > potentialSignalInstances ->

if ("App2. rSRPort1 . Element_2 ". equals (communicationElement .
getFullyQualifiedName ())) {
// manual matching : map to first signal group
for (SIAbstractSignalInstance potentialSignal :

potentialSignalInstances) {
if (potentialSignal instanceof

SISignalGroupInstance) {
return potentialSignal

}
}

}
if ("App2. rSRPort1 . Element_2 . RecordElement [0]". equals (

communicationElement . getFullyQualifiedName ())) {
// the RecordElement (representing an array of

primitive) is expanded to map the single array
elements

//
}
optionalMatchedSignalInstance

}
}

scriptLogger .info(" Created {0} data mappings .",dataMappings .size ())
}

}
}

}

Listing 5.273: Autodatamap and do expand a specific nested array element

evaluateMatchesWithCompatibility(IAutoMappingEvaluatorWithCompatibility) allows to eval-
uate and change the results of the auto-mapping. In contrast to evaluateMatches(IAutoMappingEvaluator)
this method also provides the compatibility of the optional match.

For each communication element the provided lambda is called: Parameters are the communication
element, the optional matched target signal instance (or null), the compatibility of them and a list
of all potential target signal instances (respecting the selectTargetSignalInstances(Action)
predicates). The return value must be a signal instance or null.

© 2025, Vector Informatik GmbH 230 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . ECompatibility
import com. vector .cfg. sysdesc .model. communication . instance .

SIAbstractSignalInstance
import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. datamapping . SIDataMapping

scriptTask (" evaluateSignalsByCompatibility ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we want to accept full matches for data mapping
// and apply some custom rules for non -full matches

List < SIDataMapping > createdMappings = selectCommunicationElements
{
unmapped ()
senderReceiver ()

} autoMapTo {
evaluateMatchesWithCompatibility {

SICommunicationElement communicationElement ,
SIAbstractSignalInstance optionalMatchedSignal ,
ECompatibility compatibility ,
List < SIAbstractSignalInstance > potentialSignals ->

if (compatibility == ECompatibility .FULL) {
return optionalMatchedSignal

}
// for non -full matches we return the first potential

match if present
if (potentialSignals .size () > 0) {

return potentialSignals .get (0)
}
return null

}
}

scriptLogger .info(" Created {0} data mappings .", createdMappings .
size ())

}
}

}
}

Listing 5.274: Evaluate matched signal instances using compatibility

confirmByCompatibility(IAutoMappingConfirmation) allows to evaluate the mappings which
should be created.

For each communication element the provided lambda is called: Parameters are the communication
element, the optional matched target signal instance (or null) and the compatibility of them
(ECompatibility.NULL if no optional match present) respecting all previous evaluations. So this
is the final verifying step to confirm or reject the mapping. The return value must be true if the
mapping should be created or false if you want to reject the mapping.

© 2025, Vector Informatik GmbH 231 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . ECompatibility
import com. vector .cfg. sysdesc .model. communication . instance .

SIAbstractSignalInstance
import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. datamapping . SIDataMapping

scriptTask (" confirmMappingToSignalByCompatibility ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we want only to accept data mappings with a
full match

// and report all other

List < SIDataMapping > createdMappings = selectCommunicationElements
{
unmapped ()
senderReceiver ()

} autoMapTo {
confirmByCompatibility {

SICommunicationElement communicationElement ,
SIAbstractSignalInstance optionalMatchedSignal ,
ECompatibility compatibility ->

if (compatibility == ECompatibility .FULL) {
return true

}
if (optionalMatchedSignal != null) {

// report non -full matches
scriptLogger .info(" Compatibility {0} between signal

{1} and communication element {2}.",
compatibility ,
optionalMatchedSignal . getName (),
communicationElement . getFullyQualifiedName ())

} else {
// report signals for which the auto mapper could not

find a match
scriptLogger .info("No match for communication element

{0}.",
communicationElement . getName ())

}
return false

}
}

scriptLogger .info(" Created {0} data mappings .", createdMappings .
size ())

}
}

}
}

Listing 5.275: Decide which mappings should be created by compatibility

Compatibility Between Communication Elements and Signal Instances ECompatibility repre-
sents the compatibility between an SIAbstractSignalInstance and an SICommunicationElement
for a potential or existing SIDataMapping. This enum helps to determine how good the elements
are matching in terms of names and types and is available for example at the data mapping

© 2025, Vector Informatik GmbH 232 of 387

Chapter 5. AutomationInterface API Reference

assistant or the data mapping automation API.

FULL For a FULL match the SIAbstractSignalInstance and the SICommunicationElement
have to be compatible regarding their types (see TYPE_INCOMPATIBLE) and the name of the sig-
nal has to match either the owner port name of the communication element, the communication
element name itself or a combination of the two. All names are normalized (e.g. removing some
common signal group and group signal suffixes and convert capital to small letters) before per-
forming the match.

FULL matches will be mapped automatically by the auto-mapper when not using further eval-
uation.

Examples:
Fully qualified SICommunicationElement names on the left mapped to fully qualified SIAb-
stractSignalInstance names on the right.

- ’MyPort.MyData’ -> ’MyData’: full match, signal and data element names are equal.
- ’MyData.DataElement’ -> ’MyData’: full match, signal and port names are equal.
- ’MyData_Record’ -> ’MyData_SignalGroup’: full match, the suffix is recognized as marker of
signal group and marker of record without further meaning.
- ’ParkingBrake_Status’ -> ’ParkingBrake_Position’: no match, the suffixes are no obvious mark-
ers which can be ignored, compatibility NONE.
- ’MyPort.MyStructure.MyData1’ -> ’MyStructure.MyData1’: full match, group signal and record
element have equal names.
- ’ParkingBrake.ParkingBrakeStatus’ -> ’MyStatus1’: no full match, compatibility NONE.
- ’ParkingBrake.ParkingBrakeStatus’ -> ’BrakeStatus’: no full match, but a PARTIAL_NAME match
because signal name is contained in data element name.

PARTIAL_NAME For a PARTIAL_NAME match the SIAbstractSignalInstance and the SICom-
municationElement have to be compatible regarding their types (see TYPE_INCOMPATIBLE). Addi-
tionally the name of the signal should be contained in the owner port name of the communication
element or in the communication element name itself, but also vice versa, that means if the owner
port name or the communication element name is contained in the signal name. All names are
normalized (e.g. removing some common signal group and group signal suffixes and convert capital
to small letters) before performing the match.

PARTIAL_NAME matches will be mapped automatically by the auto-mapper when not using fur-
ther evaluation.

Examples:
Fully qualified SICommunicationElement names on the left mapped to fully qualified SIAb-
stractSignalInstance names on the right.
- ’ParkingBrake.BrakeStatus’ -> ’ParkingBrakeStatus’: partial name match, data element name
is part of signal name.
- ’ParkingBrake.ParkingBrakeStatus’ -> ’BrakeStatus’: partial name match, signal name is part
of data element name.
- ’SendBrakeStatus.ParkingBrake’ -> ’Status’: partial name match, signal name is part of port
name.
- ’SendStatus.ParkingBrake’ -> ’ParkingBrake_SendStatus’: partial name match, port name is
part of signal name.

© 2025, Vector Informatik GmbH 233 of 387

Chapter 5. AutomationInterface API Reference

TYPE_INCOMPATIBLE An SIAbstractSignalInstance is TYPE_INCOMPATIBLE to an SICom-
municationElement if they match FULL or by PARTIAL_NAME and the values of dynamic length
attribute of the signal and variable size of the communication element’s data type do not match,
but also if the signal is an SISignalGroupInstance and the communication element’s data type
uses variable size. Signals using data transformation are never TYPE_INCOMPATIBLE.

TYPE_INCOMPATIBLE matches will be mapped automatically by the auto-mapper when not us-
ing further evaluation.
Hint: At first it sounds strange that the auto-mapper accepts TYPE_INCOMPATIBLE matches. The
reason is that the auto-mapper is strongly based on name matching and since the names match
(as it is the case here), the auto-mapper will already do the mapping, but you have probably to
correct some attributes at the signal or the data type which do not match some expectations of
our validations.

STRUCTURE_INCOMPATIBLE Compatibility STRUCTURE_INCOMPATIBLE is only used for SISig-
nalGroupInstances. It is used if the compatibility between the signal group and the root commu-
nication element is either FULL or PARTIAL_NAME and at the same time there is at least one com-
munication element leaf for which neither a group signal that matches FULL nor by PARTIAL_NAME
exist below the signal group.

Examples:
A signal group named ’MyComplexData’ has the group signals ’SubData1’ and ’OtherGroupSig-
nal’. The communication element of port ’MyPort’ to be matched is named ’MyComplexData’ and
is representing a record with the record elements ’SubData1’ and ’OtherRecordElement’. So that
the roots will match by names and types, but no match for the record element ’OtherRecordEle-
ment’ does exist at the signal group, since group signal ’OtherGroupSignal’ is not matching by
name.
The auto-mapper will produce the following result for that:
MyPort.MyComplexData -> MyComplexData
MyPort.MyComplexData.SubData1 -> MyComplexData.SubData1
MyPort.MyComplexData.OtherRecordElement -> unmapped

STRUCTURE_INCOMPATIBLE matches will NOT be mapped automatically by the auto-mapper.

NONE Compatibility NONE is used in the following cases:

1. SIAbstractSignalInstance and SICommunicationElement names are neither matching FULL,
nor by PARTIAL_NAME.
2. EDirections of SIAbstractSignalInstance and SICommunicationElement are incompatible.
3. If the SIAbstractSignalInstance does not use data transformation but the communication
element is an SIOperationCommunicationElement.
4. The length of the signal is not 0 but the communication element is an SITriggerCommunica-
tionElement.
5. The SIAbstractSignalInstance is not a signal group and does not use data transformation
but the communication element represents a record, a union or an array of non-primitives.
6. If the SIAbstractSignalInstance is a group signal but the communication element is not a
leaf of a complex SIDataCommunicationElement.

© 2025, Vector Informatik GmbH 234 of 387

Chapter 5. AutomationInterface API Reference

7. SIAbstractSignalInstance is a signal group but the communication element is neither repre-
senting a record nor an array.

NONE matches will NOT be mapped automatically by the auto-mapper.

NULL The compatibility NULL is only used in case the auto-mapper did not find any matching
communication elements.

Simple API for data mapping This API can be used when the names of the communication
elements, which should be data mapped, are known, as well as the AUTOSAR paths to the system
signal groups and system signals or if you want to use custom rules which you apply to sort the
elements and want to map a list of communication elements and a list of signals via index which
helps you to increase the level of control. Possible entry points are the selection of a communication
element and potentially also its child communication elements by using the fully qualified names
or using the communication and signal selections introduced above to select and later sort a list
of communication elements and a list of signals. For complex data mappings there is a comfort
function. If you define the root mapping only (e.g. mapping a record to a system signal group) the
auto-mapper will try to match the children (e.g. record elements and group signals) by naming.
This comfort function does not expand primitive arrays.

communicationElement(String...) allows to select an SICommunicationElement and to do
further operations on it, e.g. performing a data mapping. For complex communication elements
also the children can be selected. In such case the first communicationElementName has to be the
name of the root element.

ISelectedCommunicationElement represents a selection of exactly one SICommunicationElement
and provides further actions on it. For complex communication elements, also a subset of the child
elements is represented.

mapTo(String...) creates an SIDataMapping for the SICommunicationElement which is repre-
sented by this ISelectedCommunicationElement. The mapped signal is the given abstractSig-
nalInstance.

In case of a complex mapping first the system signal group has to be referenced. The child map-
pings are created considering the given order or in other words, the first communication element
is mapped to the first signal, the second element to the second signal and so on.
For a client server to signal mapping, select the operation communication element and enter the
paths to two serialized signals. Which signal is the call and which one the return signal is deter-
mined by the direction of the signals.
Hint: Use ’ECU Composition’ or ’COMPOSITIONTYPE’ as component name to select commu-
nication elements of delegation ports.

There are a few checks also for the simple API.

• Before creating the data mapping check if an equal mapping already exists. Do not create
redundant mappings.

• Check that the amount of the selected communication elements is equal to the amount of
the selected signals. For the client server use case there will be one communication element
for the call direction and one for the return direction.

© 2025, Vector Informatik GmbH 235 of 387

Chapter 5. AutomationInterface API Reference

• Checks that the direction of the signal and communication element are compatible. Checks
also the type compatibility of signal (group) and communication element.
An operation communication element can only be mapped to a serialized signal.
Records can only be mapped to serialized signals or signal groups.
Unions can only be mapped to serialized signals.
Arrays with complex array element can only be mapped to serialized signals or signal groups.
Trigger communication elements cannot be mapped to signal groups.

• For the client server data mappings, check that exactly two singals are selected and that
both signals are serialized signals.

• Checks for complex mappings, that the first abstract signal instance is a signal group and
the other instances are group signals of this signal group.

• Check that the selected communication elements are suitable for data mapping. That means
they should belong to a sender receiver, client server or a trigger port, which is not a service
port and not a PRPort.

• Check the hierarchy of the selected communication elements for complex mappings. First
selected element should be the root element and all further selected elements children of the
root element.

• Check for the client server use case, that both communication elements, one for the call and
one for the return direction can be found. The communication elements have to be operation
communication elements.

• Check for a complex mapping that the first selected communication element is really a
complex root element.

• Check if the owner port of the communication element is terminated. Terminated ports
should not be data mapped. Please remove the port terminator first.

If you want to use some internal rules other than name matching to map communication elements
to system signals you can apply this rules to sort a list of communication elements and a list of
abstract signal instances and then use the simple API below that maps them via index.

communicationElements(List) wraps SICommunicationElements to do further operations on
them, e.g. map them to system signals.

mapTo(List) maps the SICommunicationElements which are represented by this ISelectedCom-
municationElements to the given SIAbstractSignalInstances via index matching. So the first
communication element will be mapped to the first abstract signal instance, the second to the
second abstract signal instance and so on.

In case you want to ignore communication element and system signal pairs for which a mapping
does already exist please use assureMappedTo(List).

If you want to map your communication elements to system signals using name matching please use
IRuntimeSystemApi.selectCommunicationElements(com.vector.cfg.util.function.Action).

If you want to create complex mappings (currently only SenderReceiverToSignalGroupMappings)
the given abstractSignalInstances should contain the group signals right after the parent signal
group instances.

© 2025, Vector Informatik GmbH 236 of 387

Chapter 5. AutomationInterface API Reference

For a client server to signal mapping, select call and return signal instance directly after each other.

assureMappedTo(List) does the same as mapTo(List) but ignores communication element and
abstract signal instance pairs for which a data mapping does already exist.

If you want to create complex mappings (currently only SenderReceiverToSignalGroupMappings)
the given abstractSignalInstances should contain the group signals right after the parent signal
group instances.

For a client server to signal mapping, select call and return signal instance directly after each other.

Examples

scriptTask (" createSimpleMapping ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// specify path to the system signal
def signalPath = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNALS / Element_1_b16df82332bcf915 "

// enter the fully qualified communication element name
// that means ComponentName . PortName . DataElementName
def communicationElementName = "App1. pDataSend . Element "

def createdMapping = communicationElement (communicationElementName
).mapTo(signalPath)

scriptLogger .info(" Mapped '{0}' to '{1} '.",
createdMapping . getCommunicationElement (). getFullyQualifiedName (),
createdMapping . getSystemSignal (). getAutosarPath ())

}
}

}
}

Listing 5.276: Create sender receiver to signal mapping

© 2025, Vector Informatik GmbH 237 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" mapDelegationPort ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def signalPath = "/ VectorAutosarExplorerGeneratedObjects /
SYSTEM_SIGNALS / Element_1_b16df82332bcf915 "

// for delegation ports use 'ECU Composition ' instead of the
component name

def communicationElementName = "ECU Composition . pDelegationSRPort2
. Element "

def createdMapping = communicationElement (communicationElementName
).mapTo(signalPath)

scriptLogger .info(" Mapped '{0}' to '{1} '.",
createdMapping . getCommunicationElement (). getFullyQualifiedName (),
createdMapping . getSystemSignal (). getAutosarPath ())

}
}

}
}

Listing 5.277: Create data mapping for delegation port

scriptTask (" createClientServerMapping ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def callSignalPath = "/ VectorAutosarExplorerGeneratedObjects /
SYSTEM_SIGNALS / rSRPort2_d4aecc362f1feef3 "

def returnSignalPath = "/ VectorAutosarExplorerGeneratedObjects /
SYSTEM_SIGNALS / pSRPort3_2264a06bc04fc81d "

// if an operation communication element is selected , a client
server to signal mapping will be created

// the assignment of call and return signal role is depending on
the direction of the signal

def communicationElementName = "ECU Composition . pDelegationCSPort1
. Operation "

def createdMapping = communicationElement (communicationElementName
).mapTo(callSignalPath , returnSignalPath)

scriptLogger .info(" Mapped '{0}' to '{1}' as call signal and '{2}'
as return signal .",

createdMapping . getCommunicationElement (). getFullyQualifiedName (),
createdMapping . getSystemSignal (). getAutosarPath (),
createdMapping . getReturnSystemSignal (). getAutosarPath ())

}
}

}
}

Listing 5.278: Create client server to signal mapping

© 2025, Vector Informatik GmbH 238 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. datamapping . SISenderReceiverDataMapping

scriptTask (" mapRecordToSignalGroup ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// specify the path to the signal group
def signalGroup = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNAL_GROUPS / Element_2_de8db6949370c6b4 "

// specify the paths to the group signals of the signal group
def groupSignal1 = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNALS / ay1_48523fe229ba8c99 "
def groupSignal2 = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNALS / ay2_071a3305d39fcca4 "
def groupSignal3 = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNALS / ay3_84eba37e401eacd1 "

// the name of the root element
def record = "ECU Composition . pDelegationSRPort1 . Element_2 "

// the names of the child elements
def recordElement1 = "ECU Composition . pDelegationSRPort1 . Element_2

. RecordElement "
def recordElement2 = "ECU Composition . pDelegationSRPort1 . Element_2

. RecordElement_1 "
def recordElement3 = "ECU Composition . pDelegationSRPort1 . Element_2

. RecordElement_2 "

// create the mapping , first argument should be the root element ,
followed by the leaf elements for the child mappings

// for the signals , first argument should be the signal group ,
followed by the group signals

// the mapping will be done using the given order
// e.g. the first element (record) will be mapped to the signal

group (signalGroup),
// the last record element (recordElement3) will be mapped to the

last group signal (groupSignal3)
def createdMapping = communicationElement (record , recordElement1 ,

recordElement2 , recordElement3)
.mapTo(signalGroup , groupSignal1 , groupSignal2 , groupSignal3)

scriptLogger .info(" Mapped '{0}' to '{1} '.",
createdMapping . getCommunicationElement (). getFullyQualifiedName (),
createdMapping . getSystemSignal (). getAutosarPath ())

// print info for the child mappings
for (final SISenderReceiverDataMapping childMapping :

createdMapping . getChildDataMapping ()) {
scriptLogger .info(" Mapped '{0}' to '{1}'.",
childMapping . getCommunicationElement (). getFullyQualifiedName ()

,
childMapping . getSystemSignal (). getAutosarPath ())

}
}

}
}

}

Listing 5.279: Map record to signal group

© 2025, Vector Informatik GmbH 239 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. datamapping . SISenderReceiverDataMapping

scriptTask (" mapArrayToSignalGroup ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// specify the path to the signal group
def signalGroup = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNAL_GROUPS / Element_2_de8db6949370c6b4 "

// specify the paths to the group signals of the signal group
def groupSignal1 = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNALS / ay1_48523fe229ba8c99 "
def groupSignal2 = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNALS / ay2_071a3305d39fcca4 "
def groupSignal3 = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNALS / ay3_84eba37e401eacd1 "

// the name of the root element
def array = "ECU Composition . pDelegationSRPort2 . Element_1 "

// select the element of the array using the position index of the
element

def arrayElement1 = "ECU Composition . pDelegationSRPort2 . Element_1
[0]"

def arrayElement2 = "ECU Composition . pDelegationSRPort2 . Element_1
[1]"

def arrayElement3 = "ECU Composition . pDelegationSRPort2 . Element_1
[2]"

def createdMapping = communicationElement (array , arrayElement1 ,
arrayElement2 , arrayElement3)
.mapTo(signalGroup , groupSignal1 , groupSignal2 , groupSignal3)

scriptLogger .info(" Mapped '{0}' to '{1} '.",
createdMapping . getCommunicationElement (). getFullyQualifiedName (),
createdMapping . getSystemSignal (). getAutosarPath ())

// print info for the child mappings
for (final SISenderReceiverDataMapping childMapping :

createdMapping . getChildDataMapping ()) {
scriptLogger .info(" Mapped '{0}' to '{1}'.",
childMapping . getCommunicationElement (). getFullyQualifiedName ()

,
childMapping . getSystemSignal (). getAutosarPath ())

}
}

}
}

}

Listing 5.280: Map array to signal group

© 2025, Vector Informatik GmbH 240 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. datamapping . SISenderReceiverDataMapping

scriptTask (" completeComplexDataMapping ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we want to map a record to a system signal
group

// we will map only the roots
// a comfort function will try to find matches in record elements

and group signals via naming

String recordName = "ECU Composition . pDelegationSRPort1 . Element_2 "
String signalGroupPath = "/ VectorAutosarExplorerGeneratedObjects /

SYSTEM_SIGNAL_GROUPS / Element_2_de8db6949370c6b4 "

SISenderReceiverDataMapping createdDataMapping =
communicationElement (recordName).mapTo(signalGroupPath)

scriptLogger .info(" Mapped {0} -> {1}.",
createdDataMapping . getCommunicationElement (). getFullyQualifiedName

(),
createdDataMapping . getSystemSignal (). getName ())

// we want also to print info for the child mappings
for (SISenderReceiverDataMapping childMapping in

createdDataMapping . getLeafDataMappings ()) {
scriptLogger .info(" Mapped {0} -> {1}.",
childMapping . getCommunicationElement (). getFullyQualifiedName ()

,
childMapping . getSystemSignal (). getName ())

}
}

}
}

}

Listing 5.281: Map complex data element to system signal group and let the auto-mapper complete
the mapping if possible

© 2025, Vector Informatik GmbH 241 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. datamapping . SIDataMapping
import com. vector .cfg. sysdesc .model. datamapping . SIClientServerToSignalDataMapping
import com. vector .cfg. sysdesc .model. communication . instance .

SIAbstractSignalInstance

scriptTask (" UseSimpleAPIToCreateMultipleDataMappings ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we know for each communication element the name
of the system signal to map it to

// (for example stored in some external file)
// so we use the simple API instead of the auto mapping

List <String > comElementNames =
["ECU Composition . TriggerDataMappingZeroLengthSignal .

SomeTrigger ",
// com element below for client server to signal mapping
" App1_1 . pCSPort1 . Operation ",
"App2. rSRPort1 . Element ",
// com elements below are a record and its record elements
"App2. rSRPort1 . Element_2 ",
"App2. rSRPort1 . Element_2 . RecordElement ",
"App2. rSRPort1 . Element_2 . RecordElement_2 "]

List <String > signalNames =
[" TriggerDataMappingZeroLengthSignal_896bde67e5a0f5b4 ",
// the two signals below are used for a client server to

signal mapping
// one call and one return signal
" rSRPort2_d4aecc362f1feef3 ", " pSRPort3_2264a06bc04fc81d ",
" RElement_1_c07c9ba68bc545ba ",
// com elements below is a signal group and its group signals
" elemB_c255f5e38fd8b21d ",
" fieldA_f1d3783e235e88d3 ",
" fieldB_344fdc16e87cfdaa "]

// we use the communication element selection to retrieve the
communication elements

// for the client server to signal mapping the selection will find
two com elements for the one name

// one for the call direction and one for the return direction
List < SICommunicationElement > comElements =

selectCommunicationElements {
fullyQualifiedNames (comElementNames)
// we need to select also unmapped record elements , so use

fully expanded selection
// another way would be to select only the root
// and then access the leafs e.g. via

IDataCommunicationElement .
getLeafsFullExpandedExceptPrimitiveArrays ()

selectFullyExpanded ()
}. getCommunicationElements ()

// since our used predicate does not guarantee any order , we have
to sort our communication elements to assure they are in
correct order

comElements .sort{a,b -> comElementNames . indexOf (a.
getFullyQualifiedName ()) <=> comElementNames . indexOf (b.
getFullyQualifiedName ())}

Listing 5.282: Map communication elements to system signals using simple API Part1

© 2025, Vector Informatik GmbH 242 of 387

Chapter 5. AutomationInterface API Reference

// now select and sort the signal instances
List < SIAbstractSignalInstance > signals = new ArrayList <

SIAbstractSignalInstance >(selectSignalInstances {
names(signalNames)

}. getSignalInstances ())

signals .sort{a,b -> signalNames . indexOf (a. getName ()) <=> signalNames
. indexOf (b. getName ())}

// map communication elements via index to the system signals
// for complex mappings the children need to be inserted directly

after the parent

// for client server mappings call and return elements right after
each other

// call first or return first does not matter

// mapTo (...) would fail if one of the mappings does already exist
// but in this example we just want to make sure that the mapping

exist , if not assureMappedTo (...) will create it , if it does
exist it will do nothing

List < SIDataMapping > dataMappings = communicationElements (comElements
). assureMappedTo (signals)

// finally do some reporting for the pairs that were previously not
mapped to each other

for (SIDataMapping dataMapping in dataMappings) {
scriptLogger .info(" Mapped {0} to {1}.",

dataMapping . getCommunicationElement ().
getFullyQualifiedName (),

dataMapping . getSystemSignal (). getName ())

if (dataMapping instanceof SIClientServerToSignalDataMapping) {
scriptLogger .info(" Return signal is {0}.",

((SIClientServerToSignalDataMapping) dataMapping).
getReturnSystemSignal (). getName ())

}
}

}
}

}
}

Listing 5.283: Map communication elements to system signals using simple API Part2

5.10.4.13 Remove Data Mappings

The previous chapter was about mapping communication elements and signal instances. Now we
want to have a look how to remove such mappings again.
This can be done using the communication element selection API (see 5.10.4.3 on page 184) or
the signal instance selection API (see 5.10.4.2 on page 180) and calling a method to unmap the
selected communication elements / signal instances.

Unmapping by Selecting Communication Elements The use case of unmapping communication
elements is based on the selection of communication elements. The targets to be unmapped are
signal instances, which can be also narrowed down by further closures.

© 2025, Vector Informatik GmbH 243 of 387

Chapter 5. AutomationInterface API Reference

unmap() unmaps the selected communication elements from all mapped system signals. In case
that not all data mappings of the selected communication elements shall be removed the mapped
signal instances can be narrowed down using unmapFrom(Action).

For SenderReceiverToSignalGroupMappings (complex mappings) it is already enough to select
one of the communication elements (for example the root element), all mappings belonging to the
complex mapping will be removed. In other words removing the root mapping also removes the
child mappings, removing a child mapping also removes the root mapping and the other child
mappings of the same root.

Examples for unmap()

© 2025, Vector Informatik GmbH 244 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.dom. runtimesys .pai.api. IUnmappedComElementAndSignalResult

scriptTask (" UnmapCommunicationElements ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// we want to remove all data mappings of delegation ports in this example
def result = selectCommunicationElements {

mapped ()
delegation ()

} unmap ()

// now print a detailed info for all removed data mappings
// we want also detailed info for client server to signal mappings and

sender receiver to signal group mappings
scriptLogger .info(" Removed {0} (root) mappings .", result .size ())

for (IUnmappedComElementAndSignalResult unmappedResult : result) {
scriptLogger .info("{0} -> {1}",

unmappedResult . getCommunicationElement (). getFullyQualifiedName
(),

unmappedResult . getSignalInstance (). getName ())

// additional info for return signal mapping
if (unmappedResult . getReturnSignalCommunicationElement () != null) {

scriptLogger .info("{0} -> {1}",
unmappedResult . getReturnSignalCommunicationElement ().

getFullyQualifiedName (),
unmappedResult . getReturnSignalInstance (). getName ())

}

// additional info for mapped record and array elements
if (! unmappedResult . getChildCommunicationElements (). isEmpty ()) {

for (int i = 0; i < unmappedResult . getChildCommunicationElements ()
.size (); i++) {
scriptLogger .info("{0} -> {1}",

unmappedResult . getChildCommunicationElements ().get(i).
getFullyQualifiedName (),

unmappedResult . getGroupSignalInstances ().get(i).
getName ())

}
}

}
}

}
}

}

Listing 5.284: Remove Data Mapping of Communication Element

Control unmapping in unmapFrom(Closure)

selectTargetSignalInstances(Action) allows to define predicates to narrow down the target
signal instances to be unmapped from the previously selected communication elements.

evaluateMatches(IUnmappingEvaluator) allows to evaluate and change the results of the com-
munication elements which are about to be unmapped from signal instances.

For each selected communication element the provided lambda is called: Parameters are the cur-

© 2025, Vector Informatik GmbH 245 of 387

Chapter 5. AutomationInterface API Reference

rent handled communication element and a list of all mapped signal instances (respecting the
selectTargetSignalInstances(Action) predicates). The return value must be a list of signal
instances which are mapped to the current handled communication element.

Examples for unmapFrom(Closure)

scriptTask (" UnmapCommunicationElementsAdvanced ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// we want to remove only data mappings for delegation ports to signals of
a special frame

def result = selectCommunicationElements {
mapped ()
delegation ()

} unmapFrom {
// we have already filtered the communication elements
// in this closure we can now additionally filter also for the

signals of the data mapping to be removed
selectTargetSignalInstances {

frame(" MyFrame ")
}

}

// see the simple example above how to print more detailed info
scriptLogger .info(" Removed {0} (root) mappings .", result .size ())

}
}

}
}

Listing 5.285: Remove Data Mapping of Communication Element Considering Signals

Unmapping by Selecting Signal Instances The use case of unmapping system signals is based
on the selection of signal instances. The targets to be unmapped are communication elements,
which can be also narrowed down by further closures.

unmap() unmaps the selected signal instances from all mapped communication elements. In case
that not all data mappings of the selected signal instances shall be removed the mapped commu-
nication elements can be narrowed down using unmapFrom(Action).

For SenderReceiverToSignalGroupMappings (complex mappings) it is already enough to select the
signal group or one of the group signals, all mappings belonging to the complex mapping will be
removed. In other words removing the root mapping also removes the child mappings, removing a
child mapping also removes the root mapping and the other child mappings of the same root.

Examples for unmap()

© 2025, Vector Informatik GmbH 246 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.dom. runtimesys .pai.api. IUnmappedComElementAndSignalResult

scriptTask (" UnmapSignalInstances ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// we want to remove all data mappings of all mapped tx signals in this
example

def result = selectSignalInstances {
mapped ()
tx()

} unmap ()

// now print a detailed info for all removed data mappings
// we want also detailed info for client server to signal mappings and

sender receiver to signal group mappings
scriptLogger .info(" Removed {0} (root) mappings .", result .size ())

for (IUnmappedComElementAndSignalResult unmappedResult : result) {
scriptLogger .info("{0} -> {1}",

unmappedResult . getCommunicationElement (). getFullyQualifiedName
(),

unmappedResult . getSignalInstance (). getName ())

// additional info for return signal mapping
if (unmappedResult . getReturnSignalCommunicationElement () != null) {

scriptLogger .info("{0} -> {1}",
unmappedResult . getReturnSignalCommunicationElement ().

getFullyQualifiedName (),
unmappedResult . getReturnSignalInstance (). getName ())

}

// additional info for mapped record and array elements
if (! unmappedResult . getChildCommunicationElements (). isEmpty ()) {

for (int i = 0; i < unmappedResult . getChildCommunicationElements ()
.size (); i++) {
scriptLogger .info("{0} -> {1}",

unmappedResult . getChildCommunicationElements ().get(i).
getFullyQualifiedName (),

unmappedResult . getGroupSignalInstances ().get(i).
getName ())

}
}

}
}

}
}

}

Listing 5.286: Remove Data Mapping of Signal

Control unmapping in unmapFrom(Closure)

selectTargetCommunicationElements(Action) allows to define predicates to narrow down the
target communciation elements to be unmapped from the previously selected signal instances.

evaluateMatches(IUnmappingEvaluator) allows to evaluate and change the results of the signal
instances which are about to be unmapped from communication elements.

© 2025, Vector Informatik GmbH 247 of 387

Chapter 5. AutomationInterface API Reference

For each selected signal instance the provided lambda is called: Parameters are the current handled
signal instance and a list of all mapped communication elements (respecting the selectTarget-
CommunicationElements(Action) predicates). The return value must be a list of communication
elements which are mapped to the current handled signal instance.

Examples for unmapFrom(Closure)

scriptTask (" UnmapSignalInstancesAdvanced ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// we want to remove only data mappings for transformed signals which are
mapped to communication elements of component 'App1 '

def result = selectSignalInstances {
mapped ()
transformed ()

} unmapFrom {
// we have already filtered the signal instances
// in this closure we can now additionally filter also for

communication elements of the data mapping to be removed
selectTargetCommunicationElements {

component ("App1")
}

}

// see the simple example above how to print more detailed info
scriptLogger .info(" Removed {0} (root) mappings .", result .size ())

}
}

}
}

Listing 5.287: Remove Data Mapping of Signals Considering Communication Elements

5.10.4.14 Configure RTE Implementation Plug-ins

RTE implementation plug-ins (RIPs) can be configured directly at the communication element
(recommended) or using the according methods at the communication element selection. They
are stored in the flat map at the entry of the flat instances descriptor which belongs to the
communication element. It is a reference to the according ECUC container representing the RIP.
When setting a RIP the flat instance descriptor will be created automatically if missing. The getters
and setters at the ICommunicationElement are not explicitly listed here. At which communication
elements the references need to be configured is defined in [SWS_Rte_CONSTR_80002].

mapToRIPs(Action) offers the possibility to map the selected communication elements to RTE
implementation plug-ins or to modify the name of their flat instance descriptors.

setLocalRIPsReference(String) sets the RTE implementation plug-in reference for local com-
munication (associatedRtePlugin reference).

setCrossClusterRIPsReference(String) sets the RTE implementation plug-in reference for
cross-cluster communication (associatedCrossSwClusterComRtePlugin reference).

name(String) sets the name of the flat instance descriptor referencing the communication ele-
ment.

© 2025, Vector Informatik GmbH 248 of 387

Chapter 5. AutomationInterface API Reference

name(Function) allows to define a function which maps the communication element to the flat
instance descriptor name.

useCommunicationGraph() extends the selection of each communication element by its whole
communication graph. Communication graph means all required and provided ports taking part
in the communication. For example in a 1:n connection it would be the provider port and all n
required ports.

removeLocalRIPsReference() removes the associatedRtePlugin references of the selected commu-
nication elements, so that they do not use an RTE implementation plug-in for local communication
anymore.

removeCrossClusterRIPsReference() removes the associatedCrossSwClusterComRtePlugin ref-
erences of the selected communication elements, so that they do not use an RTE implementation
plug-in for cross-cluster communication anymore.

deleteFlatInstanceDescriptors() deletes the flat instance descriptors of the selected commu-
nication elements.

Since the RIP references are stored at the flat instance descriptor they might not always be
changeable. This can be checked via the according methods at the SICommunicationElement
(SICommunicationElement.isAssociatedLocalClusterRtePluginReferenceChangeable(),
SICommunicationElement.isAssociatedCrossClusterRtePluginReferenceChangeable(),
SICommunicationElement.isFlatInstanceDescriptorNameChangeable()
and SICommunicationElement.isFlatInstanceDescriptorDeletable()).

There are also methods available at the runtime system API to get the according ECUC containers
which can be referenced as RIP.

getAvailableLocalRIPsContainers() collects and returns all containers which are associated
with RTE implementation plug-ins (RIPs) for local communication.

getAvailableCrossClusterRIPsContainers() collects and returns all containers which are as-
sociated with RTE implementation plug-ins (RIPs) for cross-cluster communication.

Examples

© 2025, Vector Informatik GmbH 249 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" ConfigureRIPs ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def ripContainers = getAvailableLocalRIPsContainers ()
String ripContainerPath = AsrPath . create (ripContainers .first). toString ()

def comElementsWithRIP = selectCommunicationElements {
component (" App1_1 ")
port(" pDataWrite ")
name(" Element ")

}. mapToRIPs {
// set the RTE implementation plug -in
setLocalRIPsReference (ripContainerPath)
// there are also according methods to set the cross - cluster plug -in
// and to modify the name of the created flat instance descriptor

}
scriptLogger .info(" Mapped {0} communication elements to RTE

implementation plug -in {1}.",
comElementsWithRIP .size (),
ripContainerPath)

}
}

}
}

Listing 5.288: Configure RTE implementation plug-ins

scriptTask (" RemoveRIPs ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def comElementsRemovedRIPs = selectCommunicationElements {
component ("App1")

}. removeLocalRIPsReference ()
// it is also possible to remove the flat instance descriptor or the

cross - cluster reference

scriptLogger .info(" Removed RTE implementation plug -ins of {0}
communication elements .", comElementsRemovedRIPs .size ())

}
}

}
}

Listing 5.289: Remove RTE implementation plug-ins

© 2025, Vector Informatik GmbH 250 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.model.mdf.model. autosar . ecucdescription . MIContainer

scriptTask (" RemoveRIPOfComElement ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedComElements = selectCommunicationElements {
component ("App1")

}. getCommunicationElements ()

// the communication element has getters and setter which can be also
used

// check if comElement has a RIP reference and remove it if it is
changeable

def comElement = selectedComElements .first
MIContainer ripContainer = comElement . getAssociatedLocalClusterRtePlugin

()
if (ripContainer != null && comElement .

isAssociatedLocalClusterRtePluginReferenceChangeable ()) {
comElement . setAssociatedLocalClusterRtePluginReference (null)

}
}

}
}

}

Listing 5.290: Access RTE implementation plug-ins directly at the communication element

5.10.4.15 Create Component Prototypes

In the create component prototypes use case, components can be instantiated after a compo-
nent type was selected. So the entry point is the component type selection (see 5.10.4.4 on
page 188).

Instantiate Components createPrototype() creates a SwComponentPrototype in the Struc-
turedEXtract for each selected component type. The names of the created SwComponentProto-
types are derived from the selected component types.

Examples for createPrototype()

scriptTask (" createComponentPrototypesForNotInstantiatedTypes ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def createdComponents = selectComponentTypes {
not {

instantiated ()
}

}. createPrototype ()

scriptLogger .info(" Created '{0}' component prototypes .",
createdComponents .size ())

}
}

}
}

Listing 5.291: Create component prototypes for not instantiated types

© 2025, Vector Informatik GmbH 251 of 387

Chapter 5. AutomationInterface API Reference

Specify the component prototype instantiation in createPrototypeWith(Closure)

IComponentPrototypeCreator provides an Api to control some aspects, e.g. the naming, of newly
created components.

• name(Function) computes a name for the component prototypes that should be created for,
by the IComponentTypeSelection provided, component types.

• count(int) defines how many component prototypes should be created for each selected
component type. The default is 1.

Examples for customizing the instantiation

import com. vector .cfg. sysdesc .model. component . SIComponentType

scriptTask (" specifyNameOfCreatedComponent ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def createdComponents = selectComponentTypes {
application ()

}. createPrototypeWith {
name {

// define the naming of new created prototypes
SIComponentType <?> type -> type. getName () + " _postfix "

}
}

scriptLogger .info(" Created '{0}' component prototypes .",
createdComponents .size ())

}
}

}
}

Listing 5.292: Specify name of created component

© 2025, Vector Informatik GmbH 252 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. component . SIComponentType

scriptTask (" specifyNameOfCreatedComponent ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def createdComponents = selectComponentTypes {
name ~"App .*"

}. createPrototypeWith {
name {

// you can still define a naming pattern
SIComponentType <?> type -> type. getName () + "_CP"

}

// and at the same time define how many prototypes should be
created for each component type

count (3)
}

scriptLogger .info(" Created '{0}' component prototypes .",
createdComponents .size ())

}
}

}
}

Listing 5.293: Create more than 1 component prototype

5.10.4.16 Create Delegation Ports

The automation interface offers a possibility to create delegation ports at the TopLevel-Composition
of the StructuredExtract. Therefore a port interface needs to be selected and a direction specified.
Alternatively the component port and the origin port selections offer also APIs for that use case.
For the origin context based creation of delegation ports see 5.10.4.16 on page 256 below, the
component port based creation of delegation ports can be found in the examples at the end of
following chapter (5.10.4.16 on page 255).

The entry points are the port interface selection (see 5.10.4.7 on page 195), the component port
selection (see 5.10.4.1 on page 174) or the origin component port selection (see 5.10.4.8 on
page 199).

Instantiate Delegation Ports createPrototype(Action) creates a PortPrototype on the ecu
composition of the StructuredExtract for each selected port interface. If the naming is not specified,
the names of the created delegation ports are derived from the selected port interfaces. The
direction of the ports has to be specified.

Specify the delegation port prototype instantiation

IDelegationPortCreator provides an Api to control some aspects, e.g. the naming or the direc-
tion, of newly created delegation ports.

• name(Function) computes a name for the delegation port prototypes that should be created
for port interfaces, which are provided by the used selection API.

• direction(EDirection) defines the direction of the port prototype that should be created.
EDirection.Tx will create provided ports, EDirection.Rx will create required ports. Dele-
gation provided-required ports are not supported.

© 2025, Vector Informatik GmbH 253 of 387

Chapter 5. AutomationInterface API Reference

• count(int) defines how many delegation port prototypes should be created for each selected
port interface. The default is 1.

For the origin and component port selection APIs the naming can be also done based on the
selected ports.

• nameFromOriginPort(Function) computes a name for the delegation port prototypes that
should be created for origin ports, which are provided by the used IOriginComponentPort-
Selection.

• nameFromComponentPort(Function) computes a name for the delegation port prototypes
that should be created for component ports, which are provided by the used IComponent-
PortSelection.

Examples

import com. vector .cfg. sysdesc .model. communication . EDirection

scriptTask (" createDelegationPortSimple ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def createdComponentPorts =
selectPortInterfaces {

// select all client server application port interfaces of
component 'App3 '

componentType "App3"
clientServer ()
application ()

} createPrototype {
// EDirection .Tx to create a PPort and EDirection .Rx to create a

RPort
direction (EDirection .Tx)
// if no name is specified , the name of the port interface will be

taken for the port
}

scriptLogger .info(" Created {0} delegation ports.", createdComponentPorts .
size ())

}
}

}
}

Listing 5.294: Create delegation port simple

© 2025, Vector Informatik GmbH 254 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . EDirection
import com. vector .cfg. sysdesc .model.port. SIPortInterface

scriptTask (" createDelegationPortCustomized ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def createdComponentPorts =
selectPortInterfaces {

// select the port interface of 'App1. ppFirst ' and the port
interface named 'Second '

or {
componentPort "App1. ppFirst "
name " Second "

}
} createPrototype {

name {
// specify the naming of the new ports
SIPortInterface <?> portInterface -> "pp" + portInterface .

getName () + "_new"
}
// EDirection .Rx is leading to the creation of required ports
direction (EDirection .Rx)
// for each selected port interface two delegation ports will be

created
count (2)

}
scriptLogger .info(" Created {0} delegation ports.", createdComponentPorts .

size ())
}

}
}

}

Listing 5.295: Create delegation port customized

© 2025, Vector Informatik GmbH 255 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" createDelegationPortFromComponentPort ", DV_PROJECT){

// in this example we want to create a delegation port for an existing SWC port

code {
transaction {

domain . runtimeSystem {
def createdComponentPorts =

selectComponentPorts {
component "App3"
name " rOtherSR1Port "

} createDelegationPorts {

// we can use the selected component port to specify the name of
the new port

// also we could have used the name(Closure) method from examples
above and use the port interface for naming

nameFromComponentPort {
// specify the naming of the new ports
SIComponentPort componentPort -> componentPort . getPortName () +

"_new"
}
// since we have selected a component port previously , we can now

use the direction of it
// of course it is also possible to use direction (EDirection) here

as in the examples above
useDefaultDirection ()

}
scriptLogger .info(" Created {0} delegation ports.", createdComponentPorts .

size ())
}

}
}

}

Listing 5.296: Create delegation port based on existing component port

Create Delegation Ports Using Origin Context We have already learned how to create new
delegation ports in the flat extract using the port interface selection (see 5.10.4.16 on page 253).
Sometimes a delegation connection was not completed in the structured extract because the dele-
gation port was missing and is not flattened out. To complete this connection in the flat extract we
need a new delegation port and want to use exactly the same port interfaces as in the structured
extract. For this use case there is a shortcut directly at the origin component port selection, that
simplifies the transition from origin port to its port interface. To specify the name of the new port,
the API offers to do it using the port interface or the origin component port itself (see examples
below).

For more details about origin context see 5.10.4.8 on page 198.

createFlatExtractDelegationPorts(Action) creates a PortPrototype on the ecu composition
of the FlatExtract for each selected origin component port using their port interfaces. If the naming
is not specified, the names of the created delegation ports are derived from the port interfaces.
The direction of the ports has to be specified.

Examples

© 2025, Vector Informatik GmbH 256 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . EDirection

scriptTask (" createPortFromOriginContext ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// in this example we create a delegation port which is missing
// the port interface for our new port is provided by an origin context

port

def selectedOriginPorts
def createdDelegationPorts = selectOriginComponentPorts {

provided ()
name " OriginContext "

// remember the selected ports to print better info later
selectedOriginPorts = getSelectedOriginComponentPorts ()

}. createFlatExtractDelegationPorts {
// this call retrieves the port interfaces of the selected origin

component ports
// and creates for each origin component port a delegation port

// specify the name and direction of the new port
name {

// optionally you could use the port interface as help for
specifying the name here

// IPortInterface portInterfaceOfOriginPort -> ...
" PortWithInterfaceOfOriginContext "

}
direction (EDirection .Tx)

}

for (int i = 0; i < selectedOriginPorts .size (); i++) {
scriptLogger .info(" Created new delegation port {0} for origin port

{1}.",
createdDelegationPorts .get(i). getName (),
selectedOriginPorts .get(i). getName ())

}
}

}
}

}

Listing 5.297: Create a delegation port using the port interface of an origin context port

© 2025, Vector Informatik GmbH 257 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. component . origin . SIOriginComponentPort

scriptTask (" createPortFromOriginContextUsingPort ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// in this example we create a delegation port which is missing
// the port interface for our new port is provided by an origin context

port
// and we use the original port for naming and direction this time

def selectedOriginPorts
def createdDelegationPorts = selectOriginComponentPorts {

provided ()
name " OriginContext "

// remember the selected ports to print better info later
selectedOriginPorts = getSelectedOriginComponentPorts ()

}. createFlatExtractDelegationPorts {

// specify the name and direction of the new port
nameFromOriginPort { SIOriginComponentPort originPort ->

originPort . getPortName () + "_new"
}
// for the origin component port selection we can use the direction of

the previously selected origin ports
useDefaultDirection ()

}

for (int i = 0; i < selectedOriginPorts .size (); i++) {
scriptLogger .info(" Created new delegation port {0} for origin port

{1}.",
createdDelegationPorts .get(i). getName (),
selectedOriginPorts .get(i). getName ())

}
}

}
}

}

Listing 5.298: Create a delegation port using the origin context port to specify name and direction

5.10.4.17 Task Mapping

The task mapping use case allows to map executable entities (also called functions) directly or
using their events (also called triggers) to tasks.

The entry point for the task mapping is either to select events (see 5.10.4.5 on page 189) or
executable entities (see 5.10.4.6 on page 193). After that a task can be selected and the task
mappings customized.

Mapping to a Task
Event selection mapToTask(Action) tries to perform a task mapping for the selection of events

(triggers). Inside the lambda the task mapping can be controlled, e.g. selecting the task to which
the events should be mapped to and order the event’s positions. Does not consider events (triggers)
which do not reference an executable entity (function).

© 2025, Vector Informatik GmbH 258 of 387

Chapter 5. AutomationInterface API Reference

unmapTaskMappings(Action) performs the unmapping of task mappings from OSTasks for the
selection of events (triggers).

ExecutableEntity selection mapToTask(Action) tries to perform a task mapping for the se-
lection of executable entities (functions). Inside the lambda the task mapping can be controlled,
e.g. selecting the task to which the events (triggers) of the selected executable entities should be
mapped to and order the event’s positions.

unmapTaskMappings(Action) performs the unmapping of task mappings from OSTasks for the
selection of executable entities (functions).

Select a task Exactly one task has to be selected to perform a task mapping. Since the task
selection is only available for the task mapping use case there is no own chapter for it.

selectTask(Action) allows to define predicates to select a task for the task mapping.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

Task Predicates

• name(String) matches tasks with the given task name.

• name(Pattern) matches tasks with the given task name pattern.

• core(String) matches tasks running on a core with the given name / number (whether a
core name or a core number is used, depends on the OS, if core number is used the String
to be matched is ’Core<number>’, e.g. ’Core1’).

• core(Pattern) matches tasks running on a core with the given name pattern / number
pattern (whether a core name or a core number is used, depends on the OS, if core number
is used the String to be matched is ’Core<number>’, e.g. ’Core1’).

• application(String) matches tasks which belong to an application with the given name.

• application(Pattern) matches tasks which belong to an application whose name matches
the given name pattern.

• numberOfTaskMappings(int) matches tasks which already have the given number of task
mappings. The predicate can also be used to search for empty tasks with ’0’ as argument.

• priority(BigInteger) matches tasks with the given priority value.

• filterAdvanced(Predicate) matches tasks for which the given predicate results to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

Examples for mapToTask(Closure)

© 2025, Vector Informatik GmbH 259 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" doTaskMappingOfApp1 ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// select all events of component App1
component ("App1")

} mapToTask {
selectTask {

// select a task
name(" OsTask ")

}
}

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

// let 's print more information to check the created task mappings
for (SITaskMapping taskMapping : taskMappings) {

scriptLogger .info(" Mapped '{0}' triggered by '{1}' to position
'{2} on task '{3} '.",

taskMapping . getExecutableEntity (). getName (),
taskMapping . getEvent (). getName (),
taskMapping . getPositionInTask (),
taskMapping . getMappedTask (). getName ())

}
}

}
}

}

Listing 5.299: Perform task mapping example

© 2025, Vector Informatik GmbH 260 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. internalbehavior . SIEvent
import com. vector .cfg.model.mdf.ar4x. swcomponenttemplate . swcinternalbehavior .

rteevents . MIDataReceivedEvent

scriptTask (" advancedFilterForEvents ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// use advanced filter if you cannot find a suitable

predicate
filterAdvanced { SIEvent event ->

// use the mdf model if the SIEvent does not offer
required methods

def mdfEvent = event. getMdfObject ()

// for example , filter for data received events with
special criteria

if (mdfEvent instanceof MIDataReceivedEvent) {
// filter here for the special criteria
return true

}

// do not select other events
return false

}
} mapToTask {

selectTask {
name(" OtherName ")

}
}

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

}
}

}
}

Listing 5.300: Advanced Filter for Events

Examples for unmapTaskMappings(Closure)

© 2025, Vector Informatik GmbH 261 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" unmapTaskMappings ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def unmappedTaskMappings = selectEvents {
// define predicate for event selection
task(" OsTask ")
componentType ("App1")

} unmapTaskMappings {
filterTaskMappings {

// define further task mapping predicates
// in our example we have multi - instantiation of SWCs
// and want to unmap only one of them.
component " App1_1 "

}
}
scriptLogger .info(" Unmapped '{0}' task mappings .",

unmappedTaskMappings .size ())
}

}
}

}

Listing 5.301: Unmaps task mappings

Additional Comfort Functions The API provides some comfort functions listed below.

Combine via Symbol combineViaSymbol(boolean) determines whether the BswModuleEntities
and the RunnableEntities should be combined using their symbol. That means they will be mapped
to the same position on the same task. It is enough to select only the RunnableEntity or only the
BswModuleEntity, when using this option both will be mapped. The default is true.

The condition is that the symbol of a RunnableEntity and the BswModuleEntry short name of a
BswModuleEntity are equal.

Example

© 2025, Vector Informatik GmbH 262 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" combineViaSymbol ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
component (" Service1 ")
timing ()

} mapToTask {
selectTask {

name(" OtherName ")
}
// the default is true
// call this if you do not want to combine runnables and bsw

module entities via their symbol
combineViaSymbol (false)

}

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

}
}

}
}

Listing 5.302: Do not combine runnable and bsw module entity via symbol

Map Events of a Runnable Entity Together mapAllEventsOfRunnableEntity(boolean, boolean)
is a possibility to map all events of a RunnableEntity to the same position on a task. In case of the
selection of events, the task mapping will be extended, by all events (triggers) of runnable entities
(functions) for which at least one event (trigger) is selected.

With help of the two boolean arguments, the behavior of ignoring already mapped events and
ignoring events whose mapping is optional can be controlled.

Example

© 2025, Vector Informatik GmbH 263 of 387

Chapter 5. AutomationInterface API Reference

scriptTask (" mapAllEventsOfRunnable ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
name(" background_event ")
component (" App1_1 ")

} mapToTask {
selectTask {

name(" OsTask ")
}
// decide whether to consider only unmapped events
// and whether to consider only events whose mapping is

mandatory
mapAllEventsOfRunnableEntity (true , false)

}

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

}
}

}
}

Listing 5.303: Map all events of a runnable together

Order Task Mappings by Defining Successor Mappings If you do not care about the absolute
position value of the task mappings, but want to define an order, there is an option to specify
successor relationships between the selected task mappings. This is the preferred way to define
an order to using order(Closure) which will be introduced below, since it is easier to use in most
cases. One exception is for example if you already read in a sorted list of executable entity names
from external files.

defineSuccessors(Action) allows to specify the order of the selected task mappings by defining
successor relationships between the task mappings. The order defined by this method may still be
overridden by order(Consumer) and queue() if used.

First you have to specify one task mapping as the starting point.

forTaskMapping(Action) allows to select a starting task mapping for which successors can be
defined.

After that you can define a direct successor or a (logical) successor for the previously selected task
mapping.

successor(Action) allows to select a successor for the previously selected task mapping of the
sequence. The sequence can be continued by another successor(Action) or directSucces-
sor(Action) call. To start a new sequence call ITaskMappingSuccessorDefinition.forTaskMapping(Action).

directSuccessor(Action) allows to select a direct successor for the previously selected task
mapping of the sequence. The sequence can be continued by another successor(Action) or
directSuccessor(Action) call. To start a new sequence call ITaskMappingSuccessorDefini-
tion.forTaskMapping(Action).

Within these calls you can select task mappings using task mapping predicates (see 5.10.4.17 on
page 274). If the task mappings cannot be ordered to match the defined rules (for example if cycles
were defined), an exception is thrown.

© 2025, Vector Informatik GmbH 264 of 387

Chapter 5. AutomationInterface API Reference

Example

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" defineSuccessorsSimple ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// you can use both the event selection or the executable entity
selection API here

def taskMappings = selectEvents {
component ("App1")

} mapToTask {
selectTask {

name(" OsTask ")
}
defineSuccessors {

forTaskMapping {
// define task mapping predicates to select the start

of your sequence
// here we really use the predicates for task mappings

, not for events nor executable entities
// but the task mapping selection offers us a lot of

predicates
// it allow us to filter e.g. for the events which the

task mappings reference or the executable entity
which is triggered by the referenced event

executableEntity " Runnable1 "
} successor {

// now define predicates to select successors for
Runnable1

executableEntity " Runnable2 "
} successor {

// we can continue by defining the successors for
Runnable2 now

externalTrigger ()
}

}
}

// so the result on OsTask will be Runnable1 -> Runnable2 -> all
runnables triggered by external trigger events

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" Mapped runnable {0} to position {1}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getPositionInTask ())

}
}

}
}

}

Listing 5.304: Order the task mappings by defining successor relationships

© 2025, Vector Informatik GmbH 265 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" successorForGroup ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectExecutableEntities {
runnableEntity ()

} mapToTask {
selectTask {

name(" OsTask ")
}
defineSuccessors {

// you do NOT have to narrow the selection down to one
task mapping

// we want to order the task mappings by their SWC owner
in this example

// we want the runnables of App1 be executed before the
runnables of App2 and App3

// but we do not care about any order for the runnables of
App2 and App3 or want define them later

// execute runnables of App1 before runnables of App2
forTaskMapping {

component "App1"
} successor {

component "App2"
}

// you can define multiple sequences for the same task
mappings

// execute runnables of App1 before runnables of App3
forTaskMapping {

component "App1"
} successor {

component "App3"
}

}

}

// the script will map the runnables to OsTask and guarantees that
the runnables of App1 are mapped before the runnables of App2
and App3

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" Mapped runnable {0} to position {1}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getPositionInTask ())

}
}

}
}

}

Listing 5.305: Order groups by using successor calls

© 2025, Vector Informatik GmbH 266 of 387

Chapter 5. AutomationInterface API Reference

// in this example we have a task on which periodically 50ms trigger are mapped
after periodically 10ms trigger

// additionally we want the new task mappings will be insert always at the bottom
of each group

// so new 50ms triggered task mappings shall be inserted below the other 50ms
triggered task mappings

// and the new 10ms below the other 10ms triggered task mappings

scriptTask (" DefineSuccessorsAndInsertBelowAlreadyMapped ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def result = selectEvents {
or {

timing (0.01)
timing (0.05)

}
}. mapToTask {

selectTask {
name(" OsTask ")

}
mapAllEventsOfRunnableEntity (false , true)

// example continues on next page

Listing 5.306: Insert new task mappings always below existing - Part 1

© 2025, Vector Informatik GmbH 267 of 387

Chapter 5. AutomationInterface API Reference

defineSuccessors {

// you can define it in one forTaskMapping sequence if you want to
// we use in this example multiple sequences to demonstrate that it is

possible to split one complex rule into a few simple rules
// Note: we use task (" OsTask ") and the negation instead of mapped () / unmapped

(), to eventually correct 10ms and 50ms trigger mapped to other tasks by
accident

// at first define that 10ms trigger shall be mapped ahead of 50ms trigger
forTaskMapping {

timing (0.01)
}. successor {

timing (0.05)
}

// already to 'OsTask ' mapped 10ms trigger shall be mapped ahead of the other
10ms trigger

forTaskMapping {
timing (0.01)
task(" OsTask ")

}. successor {
timing (0.01)
not {

task(" OsTask ")
}

}

// and already to 'OsTask ' mapped 50ms trigger ahead of the other 50ms trigger
forTaskMapping {

timing (0.05)
task(" OsTask ")

}. successor {
timing (0.05)
not {

task(" OsTask ")
}

}
}

}

scriptLogger .info(" Created {0} task mappings .", result .size ())
}

}
}

}

Listing 5.307: Insert new task mappings always below existing - Part 2

Additionally Sort Successors When you automate the task mapping using successor definition,
there might be use cases where you still need the mappings in a ’well human readable’ form. For
example if you look them up in the task mapping editor from time to time. In that case you can
sort the task mappings using the methods below so you can find them faster in the GUI. The
sorting algorithm will respect the logical structure that is defined by the successor calls, so that
these constraints are still guaranteed.

Quick example, if you define that all periodical 50ms trigger shall be mapped after the periodical
10ms trigger, all 50ms trigger will be sorted among the other 50ms trigger and all 10ms among
the other 10ms trigger, without messing up the successor constraint.

© 2025, Vector Informatik GmbH 268 of 387

Chapter 5. AutomationInterface API Reference

sortSuccessorsInternally(Comparator) allows to define an additional comparator to increase
the overview. Therefore the defined successors will be analyzed and divided in logical groups.
The given comparator is applied on each logical group separately, so that the defined successor
relationships will not be violated.
Hint: You can use only one comparator at the same time. So defining a custom comparator and
using a default comparator at the same time will cause an exception.

The following default comparators can be used instead:
sortSuccessorsInternallyByExecutableEntity() - sorts the task mappings alphabetically by
their executable entity names.

sortSuccessorsInternallyByExecutableEntity() sorts the task mappings of the defined suc-
cessors alphabetically by their executable entity names. See sortSuccessorsInternally(Comparator)
for more details.

To use a custom comparator use sortSuccessorsInternally(Comparator) instead.

Example

© 2025, Vector Informatik GmbH 269 of 387

Chapter 5. AutomationInterface API Reference

// in this example we have a task were all mode exit events shall be mapped ahead
of all mode entry events

// but additionally we want to sort them alphabetically without breaking this
constraint

// the result will be a task on which all mode exit events are mapped first ,
sorted alphabetically

// followed by as well alphabetically sorted mode entry events

scriptTask (" DefineSuccessorsAndSort ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def result = selectEvents {
or {

modeExit ()
modeEntry ()

}
}. mapToTask {

selectTask {
name(" OsTask ")

}
mapAllEventsOfRunnableEntity (false , true)

defineSuccessors {
forTaskMapping {

modeExit ()
}. successor {

modeEntry ()
}

// you can use an own comparator calling sortSuccessorsInternally (
Comparator < ITaskMapping >)

// in our example we sort alphabetically by executable entity names
with a default comparator

sortSuccessorsInternallyByExecutableEntity ()
}

}

scriptLogger .info(" Created {0} task mappings .", result .size ())
}

}
}

}

Listing 5.308: Define successors and sort elements for better overview

Specify an Order The order of the task mappings can be specified also with the help of an
internal structural element, the so called position in task entry.

An SIPositionInTaskEntry represents a position in task for the task mapping. The entry is able
to combine several events that are mapped to one position (e.g. needed when mapping a main
function of a service component and its corresponding schedulable entity).

order(Consumer) allows to evaluate and change the order of the task mappings. The received
SIPositionInTaskEntrys are already sorted respecting the defined successors by defineSucces-
sors(Action) code. If used, the queue() option may override the order defined by this or-
der(Consumer) call.

© 2025, Vector Informatik GmbH 270 of 387

Chapter 5. AutomationInterface API Reference

It provides a possibility to order the already existing task mappings of the selected task and the
new task mappings that should be created.

Example

import com. vector .cfg. sysdesc .model. taskmapping . SIPositionInTaskEntry
import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" orderTaskMapppingsSimple ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
component ("App1")

} mapToTask {
selectTask {

name(" OsTask ")
}
order {

List < SIPositionInTaskEntry > entries ->

for (SIPositionInTaskEntry entry : entries) {
// identify by executable entity name and set the

position
if (entry. getTriggeredExecutableEntity (). equals ("

DataSendComp ")) {
// Runnable 'DataSendComp ' will be mapped
// to position 0 on task 'OsTask '
entry. setPosition (0)
continue

} else if (entry. getTriggeredExecutableEntity (). equals
(" Runnable1 ")) {
entry. setPosition (1)
continue

} else if (entry. getTriggeredExecutableEntity (). equals
(" Runnable2 ")) {
entry. setPosition (2)
continue

}
}

}
}

// print info to the console which runnable was mapped to which
position

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" Mapped runnable {0} to position {1}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getPositionInTask ())

}
}

}
}

}

Listing 5.309: Simple example of ordering the task mappings

© 2025, Vector Informatik GmbH 271 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SIPositionInTaskEntry

scriptTask (" orderTaskMapppings ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
component ("App1")

} mapToTask {
selectTask {

name(" OtherName ")
}
order {

List < SIPositionInTaskEntry > entries ->

int mappedIndex = 0
int index = 10

for (SIPositionInTaskEntry entry : entries) {
// identify by executable entity name
if (entry. getTriggeredExecutableEntity (). equals ("

DataSendComp ")) {
entry. setPosition (9)
continue

}

// already mapped on task
def alreadyMapped = entry. getAssociatedTaskMappings ().

find {
taskMapping -> taskMapping . getMappedTask () != null

}
if (alreadyMapped != null) {

entry. setPosition (mappedIndex)
mappedIndex ++
continue

}

// newly mapped
entry. setPosition (index)
index ++

}
}

}

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

}
}

}
}

Listing 5.310: Manually order the task mappings

© 2025, Vector Informatik GmbH 272 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SIPositionInTaskEntry

scriptTask (" orderTaskMapppingsOfOsTask ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
task(" OsTask ")

} mapToTask {
filterTaskMappings {

task(" OsTask ")
}
selectTask {

name(" OsTask ")
}
order {

List < SIPositionInTaskEntry > entries ->

// in this example runnables of App1 , App2 and App3 (with
only 1 task mapping) are mapped on OsTask

// sort the runnables by owner
int runnablesOfApp1 = 0
int runnablesOfApp2 = 0
for (SIPositionInTaskEntry entry : entries) {

if (entry. getOwner (). equals (" Component App1")) {
runnablesOfApp1 ++

}
if (entry. getOwner (). equals (" Component App2")) {

runnablesOfApp2 ++
}

}

// we sort in this example first runnables of 'App1 '
// followed by the runnabels of 'App2 '
// and last but not least the runnable of 'App3 '
int maxIndex = entries .size () - 1
int indexForApp1 = 0
int indexForApp2 = runnablesOfApp1

for (SIPositionInTaskEntry entry : entries) {
// the runnable of App3 should be mapped to the last

position on OsTask
if (entry. getOwner (). equals (" Component App3")) {

entry. setPosition (maxIndex)
}
if (entry. getOwner (). equals (" Component App1")) {

entry. setPosition (indexForApp1)
indexForApp1 ++

}
if (entry. getOwner (). equals (" Component App2")) {

entry. setPosition (indexForApp2)
indexForApp2 ++

}
}

}
}
scriptLogger .info(" Created '{0}' task mappings .", taskMappings .

size ())
}

}
}

}

Listing 5.311: Order task mappings on OsTask

© 2025, Vector Informatik GmbH 273 of 387

Chapter 5. AutomationInterface API Reference

Filter Task Mappings There is a way to narrow down the selected task mappings after selecting
events or executable entities. This might be helpful especially in case you use multi-instantiation of
software components. Since the selection of task mappings is only available for the task mappings
use case, there is no own chapter for it.

filterTaskMappings(Action) allows to filter the task mappings that should be created. This
might be especially helpful to narrow down the task mappings after selecting events or executable
entities when using multi instantiation (e.g. to filter the task mappings for only one instance of a
multi instantiated component prototype).

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

Task Mapping Predicates

• component(String) matches task mappings whose event is part of the internal behavior of
a component with the given component name.

• component(Pattern) matches task mappings whose event is part of the internal behavior of
a component with the given component name pattern.

• moduleConfiguration(String) matches task mappings whose event is part of the internal
behavior of a module configuration with the given module configuration name.

• moduleConfiguration(Pattern) matches task mappings whose event is part of the internal
behavior of a module configuration with the given module configuration name pattern.

• moduleConfigurationAsrPath(String) matches task mappings whose event is part of the
internal behavior of a module configuration with the given module configuration autosar
path.

• moduleConfigurationAsrPath(Pattern) matches task mappings whose event is part of the
internal behavior of a module configuration with the given module configuration autosar
path pattern.

• unmapped() matches task mappings which are not mapped to a task.

• mapped() matches task mappings which are mapped to a task.

• task(String) matches task mappings which are mapped to a task with the given task name.

• task(Pattern) matches task mappings which are mapped to a task whose name matches
the given task name pattern.

• componentType(String) matches task mappings which belongs to component types with
the given component type name.

• componentType(Pattern) matches task mappings which belongs to component types match-
ing the given component type name pattern.

• componentTypeAsrPath(String) matches task mappings which belongs to component types
with the given component type autosar path.

• componentTypeAsrPath(Pattern) matches task mappings which belongs to component types
matching the given component type autosar path pattern.

• event(String) matches task mappings for events with the given event name.

© 2025, Vector Informatik GmbH 274 of 387

Chapter 5. AutomationInterface API Reference

• event(Pattern) matches task mappings for events matching the given event name pattern.

• eventAsrPath(String) matches task mappings for events with the given event autosar path.

• eventAsrPath(Pattern) matches task mappings for events matching the given event autosar
path pattern.

• bswEvent() matches task mappings for bsw events.

• rteEvent() matches task mappings for rte events.

• timing() matches task mappings for timing events.

• timing(Double) matches task mappings for timing events with the given period (seconds).

• init() matches task mappings for init events.

• dataReceived() matches task mappings for data received events.

• dataReceiveError() matches task mappings for data receive error events.

• dataSendCompleted() matches task mappings for data send completed events.

• dataWriteCompleted() matches task mappings for data write completed events.

• operationInvoked() matches task mappings for operation invoked events.

• operationInvoked(String) matches task mappings for operation invoked events which are
invoked by an operation with the given operationName.

• serverCallReturns() matches task mappings for events which are asynchronous server call
returns events.

• modeSwitch() matches task mappings for mode switch events.

• modeEntry() matches task mappings for mode switch events with activation kind ON-
ENTRY.

• modeExit() matches task mappings for mode switch events with activation kind ON-EXIT.

• modeTransition() matches task mappings for mode switch events with activation kind ON-
TRANSITION.

• modeSwitchedAck() matches task mappings for mode switched acknowledgement events.

• externalTrigger() matches task mappings for external trigger occurred events.

• internalTrigger() matches task mappings for internal trigger occurred events.

• background() matches task mappings for background events.

• transformerHardError() matches task mappings for transformer hard error events.

• mandatory() matches task mappings for events which must be mapped. (The mapping
of operation invoked events and bsw events whose schedulable entity has no via symbol
matching runnable is optional.)

• symbol(String) matches task mappings for runnable entities with the given symbol and bsw
schedulable entities whose corresponding bsw module entry short name matches the given
symbol.

• symbol(Pattern) matches task mappings runnable entities whose symbol matches the given
symbol pattern and bsw schedulable entities whose corresponding bsw module entry short
name matches the given symbol pattern.

© 2025, Vector Informatik GmbH 275 of 387

Chapter 5. AutomationInterface API Reference

• executableEntity(String) matches task mappings for executable entities (functions) with
the given name.

• executableEntity(Pattern) matches task mappings for executable entities (functions) with
the given name pattern.

• executableEntityAsrPath(String) matches task mappings for executable entities (func-
tions) with the given autosar path.

• executableEntityAsrPath(Pattern) matches task mappings for executable entities (func-
tions) with the given autosar path pattern.

• filterAdvanced(Predicate) matches task mappings for which the given lambda results to
true.

Example

scriptTask (" firstTaskMappings ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectExecutableEntities {
componentType ("App1")

} mapToTask {
selectTask {

name(" OsTask ")
}

// in this example two components ('App1 ' and 'App1_1 ') are of
component type 'App1 '

// do the task mapping only for 'App1_1 '
filterTaskMappings {

component (" App1_1 ")
}

}

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

}
}

}
}

Listing 5.312: Filter task mappings

Apply Execution Order Constraints An ExecutionOrderConstraint restricts the execution order
of a set of ExecutableEntities. Therefore successor and direct successor relationships can be defined
for executable entities (functions), but also for events (triggers).

Since the selection of execution order constraints is available only for the task mapping use case,
there is no own chapter for it.

selectExecutionOrderConstraints(Action) allows to define predicates to select execution order
constraints that should be applied.

Per default the predicates are combined via logical AND. To realize other combinations, use the
’or’,’not’ and ’and’ predicates.

Execution Order Constraint Predicates

© 2025, Vector Informatik GmbH 276 of 387

Chapter 5. AutomationInterface API Reference

• name(String) matches execution order constraints with the given execution order constraint
name.

• name(Pattern) matches execution order constraints with the given execution order con-
straint name pattern.

• filterAdvanced(Predicate) matches execution order constraints for which the given lambda
results to true.

• and(Runnable) combines the predicates inside the lambda with a logical AND.

• or(Runnable) combines the predicates inside the lambda with a logical OR.

• not(Runnable) negates the combination of predicates inside the lambda.

Example

import com. vector .cfg. sysdesc .model.eoc. SIExecutionOrderConstraint

scriptTask (" applyEOC ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedConstraints
def taskMappings = selectExecutableEntities {

component (" App1_1 ")
} mapToTask {

selectTask {
name(" OsTask ")

}

// select execution order constraints that should be applied
selectExecutionOrderConstraints {

name(" App1ExecutionOrderConstraint ")
selectedConstraints = getSelectedExecutionOrderConstraints

()
}

}

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

for (SIExecutionOrderConstraint eoc : selectedConstraints) {
scriptLogger .info(" Applied execution order constraint '{0} '.",

eoc. getName ())
}

}
}

}
}

Listing 5.313: Use execution order constraints for the task mapping

Check Current Task Mapping The event and the executable entity selections offer getters to
retrieve task mappings. Therefore first the given predicate is evaluated to identify which events
are selected, then all task mappings which references the selected events are collected.

getTaskMappings() retrieves all SITaskMappings for the selected events (see getEvents()).

© 2025, Vector Informatik GmbH 277 of 387

Chapter 5. AutomationInterface API Reference

Note:
1. In case of multi instantiation of component prototypes, the different instances share the same
events, since the event is part of the internal behavior of the component type. Therefore if the
event is selected, getTaskMappings() will always return the task mappings for all component
prototypes.
2. Since this method can be run outside of a transaction, there might be selected events for
which no task mapping container does exist yet. The container cannot be created by calling
getTaskMappings(), so no task mapping can be returned. This happens if the system description
is not synchronized, after changes in the structured extract were done (see Automation Interface
Documentation, chapter about Model Synchronization for examples how to synchronize).

getTaskMappings() retrieves all SITaskMappings for the selected executable entities (see getEx-
ecutableEntities()).

Example

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" checkTaskMapping ", DV_PROJECT){
code {

// because we use only a getter method and no transaction below ,
// make sure that your system description is synchronized ,
// otherwise task mapping container may be missing or obsolete .
// since Cfg 5.18 this call is enough to make sure your task mapping

containers are up to date
modelSynchronization . synchronize ()

domain . runtimeSystem {
def taskName = " OsTask "

def taskMappings = selectEvents {
task(taskName)

// getTaskMappings will apply the predicate and return all task mappings
for the selected events

} getTaskMappings ()

// be careful in case of multi - instantiated component prototypes ,
// since events and executable entities are part of the internal

behavior of the component type ,
// you will receive always the task mappings for all instances here
// (even if the task mappings of the other component prototype instances

are not mapped to " OsTask ")

// print info to the console with owner of the task mapping and the
mapped task

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" TaskMapping of '{1}' for event '{0}' is mapped to

'{2}'.",

taskMapping . getEvent (). getName (),
taskMapping . getOwnerDescription (),
taskMapping . getMappedTask () == null ? "no task" : taskMapping .

getMappedTask (). getName ())
}

}
}

}

Listing 5.314: Check which events are currently mapped to OsTask

© 2025, Vector Informatik GmbH 278 of 387

Chapter 5. AutomationInterface API Reference

Keep Existing Task Mappings on Current Position queue() is an option that allows to keep the
task mappings which are already mapped to the selected task on the current position. The new task
mappings will be placed in the defined order into existing gaps. That means they are mapped to the
lowest free position. This method may override the order defined in defineSuccessors(Action)
and order(Consumer).

Example: The selected task ’Task1’ has already a TaskMappingA at position 1 and a TaskMap-
pingB at position 3. The task mappings TaskMappingC, TaskMappingD and TaskMappingE (in
that order) should be mapped to the same task using the queue() option. The new task mappings
will be assigned in the defined order to the next free position on ’Task1’.
So the result will be:
0 -> TaskMappingC (new1)
1 -> TaskMappingA (old)
2 -> TaskMappingD (new2)
3 -> TaskMappingB (old)
4 -> TaskMappingE (new3)

If the options mapAllEventsOfRunnableEntity(boolean, boolean) or combineViaSymbol(boolean)
needs to combine an existing mapping with other mappings, the combined task mapping is seen
as a new mapping. Its position will be assigned according to the rules of a new mapping explained
above. The old mapping which was not combined will be removed. In other words combined task
mappings are preferred over single task mappings.

Example

scriptTask (" queueExample ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectExecutableEntities {
componentType ("App1")

} mapToTask {
selectTask {

name(" OsTask ")
}
// this option will consider the existing mappings on the task
// if an existing task mapping is not combined for another new

incoming mapping , it will remain on its current position
queue ()

}

// if the existing task mapping was combined for another new
incoming mapping , it is considered as a new mapping and will
appear in the taskMappings below

scriptLogger .info(" Created '{0}' task mappings .", taskMappings .
size ())

}
}

}
}

Listing 5.315: Use the queue option example

© 2025, Vector Informatik GmbH 279 of 387

Chapter 5. AutomationInterface API Reference

Set Activation Offset You can set the value of the activation offset for the events/executable
entities which will be newly mapped.

setActivationOffset(Double) allows to set the activation offset at the created task mappings.
The offset will be set for all created task mappings to the given offsetInSeconds value.

It is also possible to set the activation offset parameter value of a task mapping using the event or
the executable entity selection without mapping the events/executable entities to a task. You can
use this option for example if you just want to set the activation offset and do not care whether
the event/executable is already mapped to a task or not.

setActivationOffset(double) sets the activation offset at the task mapping containers for the
selected events. If the symbol of a schedulable entity matches a runnable name, the activation
offset will be set for both, even if only one of them is selected. (Matching works as for ITaskMap-
per.combineViaSymbol(boolean).)

setActivationOffset(double)} sets the activation offset at the task mapping containers for the
selected executable entities. If the symbol of a schedulable entity matches a runnable name, the
activation offset will be set for both, even if only one of them is selected. (Matching works as for
ITaskMapper.combineViaSymbol(boolean).)

Examples

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" setActivationOffset ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// define predicates to select your event
component ("App1")
timing ()

// set the activation offset parameter value
// for the task mapping to 10 ms
}. setActivationOffset (0.01)

// print info to the console with the runnable name which is triggered
by the event

// and the activation offset of the task mapping
for (final SITaskMapping taskMapping : taskMappings) {

scriptLogger .info(" TaskMapping of runnable {0} has the activation
offset {1}.",

taskMapping . getExecutableEntity (). getName (),
taskMapping . getActivationOffset ())

}
}

}
}

}

Listing 5.316: Set the activation offset using the event selection

© 2025, Vector Informatik GmbH 280 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" setActivationOffset ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectExecutableEntities {
// define predicates to select your runnable
component ("App1")
name(" Runnable1 ")

// set the activation offset parameter value
// for the task mapping to 100 ms
}. setActivationOffset (0.1)

// print info to the console with runnable name and the activation
offset

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" TaskMapping of runnable {0} has the activation

offset {1}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getActivationOffset ())

}
}

}
}

}

Listing 5.317: Set the activation offset using the executable entity selection

© 2025, Vector Informatik GmbH 281 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" mapAndSetActivationOffset ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// define predicates to select your event
component ("App1")
init ()

} mapToTask {
// map the event to task 'OsTask '
selectTask {

name(" OsTask ")
}
// set the activation offset parameter value
// for the task mapping to 10 ms
setActivationOffset (0.01)

}

// print info to the console which runnable was mapped and the
activation offset

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" Mapped runnable {0} to position {1} with

activation offset {2}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getPositionInTask (),
taskMapping . getActivationOffset ())

}
}

}
}

}

Listing 5.318: Set the activation offset while mapping to a task

Set Os Schedule Point You can also set the value of the OsSchedulePoint parameter for the
events/executable entities which will be newly mapped.

setOsSchedulePoint(String) allows to set the OsSchedulePoint at the created task mappings.
The schedule point will be set for all created task mappings to the given osSchedulePoint value.

Also, it is possible to set the OsSchedulePoint parameter value of a task mapping using the event or
the executable entity selection without mapping the events/executable entities to a task. You can
use this option for example if you just want to set the OsSchedulePoint and do not care whether
the event/executable is already mapped to a task or not. Typical values are "CONDITIONAL"
and "UNCONDITIONAL".

setOsSchedulePoint(String) sets the OsSchedulePoint at the task mapping containers for the
selected events. If the symbol of a schedulable entity matches a runnable name, the schedule
point value will be set for both, even if only one of them is selected. (Matching works as for
ITaskMapper.combineViaSymbol(boolean).)

setOsSchedulePoint(String) sets the OsSchedulePoint at the task mapping containers for the
selected executable entities. If the symbol of a schedulable entity matches a runnable name, the
OsSchedulePoint will be set for both, even if only one of them is selected. (Matching works as for
ITaskMapper.combineViaSymbol(boolean).)

© 2025, Vector Informatik GmbH 282 of 387

Chapter 5. AutomationInterface API Reference

Examples

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" setOsSchedulePoint ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// define predicates to select your event
component ("App1")
timing ()

// set the OsSchedulePoint value
}. setOsSchedulePoint (" CONDITIONAL ")

// print info to the console with the runnable name which is triggered
by the event

// and the schedule point of the task mapping
for (final SITaskMapping taskMapping : taskMappings) {

scriptLogger .info(" TaskMapping of runnable {0} has the
OsSchedulePoint value {1}.",

taskMapping . getExecutableEntity (). getName (),
taskMapping . getOsSchedulePoint ())

}
}

}
}

}

Listing 5.319: Set the OsSchedulePoint using the event selection

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" setOsSchedulePoint ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectExecutableEntities {
// define predicates to select your runnable
component ("App1")
name(" Runnable1 ")

// set the OsSchedulePoint parameter value
}. setOsSchedulePoint (" UNCONDITIONAL ")

// print info to the console with runnable name and the
OsSchedulePoint

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" TaskMapping of runnable {0} has the

OsSchedulePoint value {1}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getOsSchedulePoint ())

}
}

}
}

}

Listing 5.320: Set the OsSchedulePoint using the executable entity selection

© 2025, Vector Informatik GmbH 283 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" mapAndSetOsSchedulePoint ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// define predicates to select your event
component ("App1")
init ()

} mapToTask {
// map the event to task 'OsTask '
selectTask {

name(" OsTask ")
}
// set the OsSchedulePoint parameter value
setOsSchedulePoint (" CONDITIONAL ")

}

// print info to the console which runnable was mapped and the
OsSchedulePoint

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" Mapped runnable {0} to position {1} with

OsSchedulePoint value {2}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getPositionInTask (),
taskMapping . getOsSchedulePoint ())

}
}

}
}

}

Listing 5.321: Set the OsSchedulePoint value while mapping to a task

Set Cyclic Trigger Implementation You can set the value of the cyclic trigger implementation
for the events/executable entities which will be newly mapped.

setCyclicTriggerImplementation(String) allows to set the cyclic trigger implementation at
the created task mappings. The cyclic trigger implementation will be set for all created task
mappings to the given cyclicTriggerImplementation value.

It is also possible to set the cyclic trigger implementation parameter value of a task mapping using
the event or the executable entity selection without mapping the events/executable entities to a
task. You can use this option for example if you just want to set the cyclic trigger implementation
and do not care whether the event/executable is already mapped to a task or not.

setCyclicTriggerImplementation(String) sets the CyclicTriggerImplementation at the task
mapping containers for the selected events. If the symbol of a schedulable entity matches a runnable
name, the CyclicTriggerImplementation value will be set for both, even if only one of them is
selected. (Matching works as for ITaskMapper.combineViaSymbol(boolean).)

setCyclicTriggerImplementation(String) sets the CyclicTriggerImplementation at the task
mapping containers for the selected executable entities. If the symbol of a schedulable entity
matches a runnable name, the CyclicTriggerImplementation will be set for both, even if only one
of them is selected. (Matching works as for ITaskMapper.combineViaSymbol(boolean).)

Examples

© 2025, Vector Informatik GmbH 284 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" setCyclicTriggerImplementation ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// define predicates to select your event
component ("App1")
timing ()

// set the CyclicTriggerImplementation value
}. setCyclicTriggerImplementation ("Auto")

// print info to the console with the runnable name which is triggered
by the event and the cyclic trigger implementation of the task

mapping
for (final SITaskMapping taskMapping : taskMappings) {

scriptLogger .info(" TaskMapping of runnable {0} has the
CyclicTriggerImplementation value {1}.",

taskMapping . getExecutableEntity (). getName (),
taskMapping . getCyclicTriggerImplementation ())

}
}

}
}

}

Listing 5.322: Set the CyclicTriggerImplementation using the event selection

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" setCyclicTriggerImplementation ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectExecutableEntities {
// define predicates to select your runnable
component ("App1")
name(" Runnable1 ")

// set the CyclicTriggerImplementation parameter value
}. setCyclicTriggerImplementation ("Auto")

// print info to the console with runnable name and the
CyclicTriggerImplementation

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" TaskMapping of runnable {0} has the

CyclicTriggerImplementation value {1}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getCyclicTriggerImplementation ())

}
}

}
}

}

Listing 5.323: Set the CyclicTriggerImplementation using the executable entity selection

© 2025, Vector Informatik GmbH 285 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. taskmapping . SITaskMapping

scriptTask (" mapAndSetCyclicTriggerImplementation ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def taskMappings = selectEvents {
// define predicates to select your event
component ("App1")
init ()

} mapToTask {
// map the event to task 'OsTask '
selectTask {

name(" OsTask ")
}
// set the CyclicTriggerImplementation parameter value
setCyclicTriggerImplementation ("Auto")

}

// print info to the console which runnable was mapped and the
CyclicTriggerImplementation

for (final SITaskMapping taskMapping : taskMappings) {
scriptLogger .info(" Mapped runnable {0} to position {1} with

CyclicTriggerImplementation value {2}.",
taskMapping . getExecutableEntity (). getName (),
taskMapping . getPositionInTask (),
taskMapping . getCyclicTriggerImplementation ())

}
}

}
}

}

Listing 5.324: Set the CyclicTriggerImplementation value while mapping to a task

5.10.4.18 Bridge Between MDF and SI Model elements

The Runtime System Domain uses SI Model elements as model abstractions to simplify the struc-
ture of the AUTOSAR model. All objects which you select using the selection APIs are SI model
elements.

SIModelObject is the common super interface for all SI model elements (as e.g. Object for all java
classes). It defines common functionality which all SI model elements provide for generic handling
of model abstractions.

On MDF level the base interface for AUTOSAR model objects is the MIObject.

It is possible to switch between model abstractions and MDF objects. This might be helpful for
advanced script tasks that extend the current scope of the model abstractions.

getModelAbstractionsForMdfObjects(Collection) is a method for an arbitrary access to all
SI-model abstractions which correspond to the given collection of MDF objects.

getMdfObject() is a bridge from the SIModelObject to the underlying MDF object. For com-
pound model abstractions, the main object will be returned, e.g. returns the port for a component
port.

Example for navigating between MDF model and model abstractions

© 2025, Vector Informatik GmbH 286 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg.model.asr. access . IAsrReferrableAccess
import java.util. Collections
import com. vector .cfg.model.si.base. SIModelObject
import com. vector .cfg. sysdesc .model. communication . instance .

SIAbstractSignalInstance

scriptTask (" switchBetweenMdfAndModelAbstraction ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

// --
// get a model abstraction object for your MDF object
// --
def referrableAccess = ScriptApi . activeProject . getInstance (

IAsrReferrableAccess)

// get some MDF objects by e.g. using the referrable access
def mdfSystemSignal = referrableAccess . getReferrableByPath ("/

VectorAutosarExplorerGeneratedObjects / SYSTEM_SIGNALS /
Element_1_b16df82332bcf915 ")

def mdfObjects = Collections . singletonList (mdfSystemSignal)

// get the model abstractions for the MDF objects
def modelAbstractions = getModelAbstractionsForMdfObjects (

mdfObjects)

// for the system signal an IAbstractSignalInstance is returned ,
if it is referenced by at least one ISignal

// so there will be exactly one model abstraction in the
collection in this example

def signalInstanceModelAbstraction
for (SIModelObject modelAbstraction : modelAbstractions) {

if (modelAbstraction instanceof SIAbstractSignalInstance) {
signalInstanceModelAbstraction = modelAbstraction

}
}

if (signalInstanceModelAbstraction == null) {
scriptLogger .info(" System Signal '{0}' is not referenced by

any ISignals ",
mdfSystemSignal . getName ())

}

// --
// get a MDF object for your model abstraction object
// --
def mdfObject = signalInstanceModelAbstraction . getMdfObject ()
// now the system signal can be used on MDF level

}
}

}
}

Listing 5.325: Switch between MDF and model abstraction example

5.10.4.19 Deleting Elements

Removing elements is not covered by the runtime system API yet. So we have to use the MDF
model for that use case for now (see chapter for MDF model). You can of course use the selection

© 2025, Vector Informatik GmbH 287 of 387

Chapter 5. AutomationInterface API Reference

APIs to find the correct elements first (e.g. for the data mappings by selecting the signals and call
getDataMappings() method) and then get their MDF objects by calling getMdfObject() which is
supported for all objects of the runtime system domain model.

You can find examples for some common use cases below.

Example

© 2025, Vector Informatik GmbH 288 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. connector . SIConnector
import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" diconnectDelegationPorts ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we want to delete the connectors to all
delegation ports

// select the component ports which should be disconnected first
List < SIComponentPort > connectedDelegationPorts =

selectComponentPorts {
connected ()
delegation ()

}. getComponentPorts ()

// get the connectors to those component ports
List < SIConnector > connectorsToDelegationPorts = []
connectedDelegationPorts .each {

connectorsToDelegationPorts . addAll (it. getConnectedConnectors ()
)

}

// we want to do a report for the disconnected ports
// therefore we will remember them
List < SIComponentPort > disconnectedPPorts = []
List < SIComponentPort > disconnectedRPorts = []

// now delete the connectors
connectorsToDelegationPorts .each { SIConnector connector ->

// we need to check whether we did not already have deleted
the connector

// and we need to check if the connector is deletable
// connectors which were not created in CFG5 cannot be deleted
if (! connector . getMdfObject (). isDeleted ()

&& connector . getMdfObject (). getCeState (). isDeletable ()
) {

// add the component ports for a final report
disconnectedPPorts .add(connector . getProviderPort ())
disconnectedRPorts .add(connector . getRequesterPort ())
// finally delete the connector
connector . getMdfObject (). delete ()

}
}

for (int i = 0; i < disconnectedPPorts .size (); i++) {
scriptLogger .info(" Deleted connector between {0} and {1}.",

disconnectedPPorts .get(i). getName (),
disconnectedRPorts .get(i). getName ())

}
}

}
}

}

Listing 5.326: Delete connectors to delegation ports

© 2025, Vector Informatik GmbH 289 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. datamapping . SIDataMapping
import com. vector .cfg. sysdesc .model. datamapping . SISenderReceiverDataMapping
import com. vector .cfg. sysdesc .model. communication . SIAbstractSystemSignal

scriptTask (" deleteDataMappingsForDelPorts ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

// in this example we want to delete the data mappings of sender
receiver delegation ports

// select the communication elements first
List < SICommunicationElement > communicationElements =

selectCommunicationElements {
delegation ()
senderReceiver ()
mapped ()

}. getCommunicationElements ()

// get the data mappings of these communication elements
List < SIDataMapping > dataMappingsToDelete = []
communicationElements .each {

dataMappingsToDelete . addAll (it. getDataMappings ())
}
// example continues on next page

Listing 5.327: Delete data mappings of sender receiver delegation ports - Part 1

© 2025, Vector Informatik GmbH 290 of 387

Chapter 5. AutomationInterface API Reference

// we want to do a report for the removed data mappings
// therefore we will remember communication element and signal
List < SICommunicationElement > comElementsOfDeletedMapping = []
List < SIAbstractSystemSignal > signalsOfDeletedMappings = []

// now delete the data mappings
dataMappingsToDelete .each { SIDataMapping dataMapping ->

// we need to check if the data mapping is deletable
// data mappings which were not created in CFG5 cannot be

deleted
if (! dataMapping . getMdfObject (). isDeleted ()

&& dataMapping . getMdfObject (). getCeState (). isDeletable
()) {

// add the component ports for a final report
comElementsOfDeletedMapping .add(dataMapping .

getCommunicationElement ())
signalsOfDeletedMappings .add(dataMapping . getSystemSignal ()

)

// we want to extend the reporting for sender receiver to
signal group mappings

// report not only the signal group but also the group
signal mappings

if (dataMapping instanceof SISenderReceiverDataMapping) {
((SISenderReceiverDataMapping) dataMapping).

getLeafDataMappings ().each {
SISenderReceiverDataMapping childMapping ->

comElementsOfDeletedMapping .add(childMapping .
getCommunicationElement ())

signalsOfDeletedMappings .add(childMapping .
getSystemSignal ())

}
}

// finally delete the data mappings
// for sender receiver to signal group mappings it is

enough to delete the root mapping
dataMapping . getMdfObject (). delete ()

}
}

for (int i = 0; i < comElementsOfDeletedMapping .size (); i++) {
scriptLogger .info(" Deleted data mapping for {0} to signal {1}"

,
comElementsOfDeletedMapping .get(i).

getFullyQualifiedName (),
signalsOfDeletedMappings .get(i). getName ())

}
}

}
}

}

Listing 5.328: Delete data mappings of sender receiver delegation ports - Part 2

5.10.4.20 Variant Handling

The only use case that supports PostBuild selectable variance in the runtime system domain is
the mapping between communication elements and signals (data mapping). If you have a variant
project the data mapping can only be done in an active model view (see chapter about model
views).

© 2025, Vector Informatik GmbH 291 of 387

Chapter 5. AutomationInterface API Reference

There is no edit variance function for the data mapping in the automation API yet. But if a signal
is visible in exactly one variant, the created data mapping will automatically be created only for
the variant in which the signal is visible. For invariant signals the created data mappings will also
be invariant.

So a good approach for PostBuild variant configurations is to loop over the model views and run
your script logic for each view.

import com. vector .cfg.model.asr.view. IModelViewExecutionContext

// this example runs also successfully for project with no PostBuild variance
// because there just be only one model view - the invariant model view

scriptTask (" dataMapVariant ", DV_PROJECT) {
code {

transaction {
domain . runtimeSystem {

for (def modelView in variance . allPostBuildVariantViews) {
final IModelViewExecutionContext context = modelView .

executeWithThisView ()

// make sure to close the view when finish (even if exceptions
occur) to not run further actions still in this view by

accident
context . withCloseable {

// do the data mapping inside this closure , we will keep
the example simple here

// remember : IAbstractSignalInstaces may also be variant
// so they should be selected also with an active model

view
selectCommunicationElements {

// the auto mapper will not create mappings which are
real duplicates

// but it is better in terms of performance to filter
for unmapped here

unmapped ()
}. autoMap ()

}
}

}
}

}
}

Listing 5.329: Create variant data mappings

5.10.4.21 Retrieving Short Name Paths and Fully Qualified Names

The runtime system automation API requires/allows to use short name paths and fully qualified
names to select elements. This chapter describes how these can be retrieved.
In general you can find a ’Copy’ -> ’Copy Short Name Path’ command in the context menu for
most elements in the GUI.
For the automation interface you can use appropriate getters depending on your use case.

Path of Port Interface Mapping If you have already connected two ports and use a port interface
mapping for the connection, you can search for your connector in the ECU Software Components

© 2025, Vector Informatik GmbH 292 of 387

Chapter 5. AutomationInterface API Reference

Editor. You can find it in the Application Ports grid or the Service Mappings grid under the ECU
Composition node or under the Application or Service Ports node of your application or service
component.

’Copy’ -> ’Copy Short Name Path’ in the context menu available in the Port Interface Mapping
column for a given connection copies the short name path of the connection’s port interface mapping
to the clip board.

If you have no connection yet which uses the port interface mapping, search for the port interface
mapping in another way. Expand the Port Interface Mapping Sets node of the ECU Software
Components Editor and the node of the set which contains your mapping. Now you can do the
’Copy’ -> ’Copy Short Name Path’ command in the context menu of the tree node which belongs
to the port interface mapping your were looking for.

Paths of System Signals and System Signal Groups GUI: If you have already used your signal
/ signal group for a data mapping, you can find the data mapping in the Data Mapping or the
Application Ports grid under the ECU Composition node. Once you found your mapping you can
retrieve the short name path of the signal / signal group via the ’Copy’ -> ’Copy Short Name
Path’ context menu on the cell of the Signal column in the Data Mapping grid or the Mapped
Signal column of the Application Ports grid.

AI: The following getter methods might be useful (see Javadoc of the method for more de-
tails):

• SIAbstractSignalInstance.getAutosarPath()

• SIAbstractSignalInstance.getFullyQualifiedName() - This getter might help you iden-
tifying group signals.

Fully Qualified Name of Communication Elements GUI: Communication elements are used
for data mappings. Their fully qualified name is build out of three parts (in general, children of
complex communication elements might have more). The name of the component, the name of
the port and the name of the data element/operation/trigger itself. In case of a delegation port
you can use ’ECU Composition’ or ’COMPOSITIONTYPE’ as component name.

Examples

Communication element of non-delegation port:
’ComponentName.PortName.DataElementName’

Communication element of delegation port:
’ECU Composition.DelegationPortName.DataElementName’

Complex communication element (record element of a record):
’ComponentName.PortName.RecordName.RecordElement1Name’

Complex communication element (array element at certain index):
’ComponentName.PortName.ArrayName[0]’

Open the data mapping assistant. You can find it in the navigation view under Runtime System ->
Add Data Mapping or as hyperlink above grids which shows data mappings. Select the direction

© 2025, Vector Informatik GmbH 293 of 387

Chapter 5. AutomationInterface API Reference

’Find matching signals for the communication elements’ on the first page and after that your
communication elements on the second page. Now on the third page (Confirm page) you can
open a context menu on the cell in the Communication Element column of your communication
element and select copy fully qualified name. The name will be copied into the clip board. If you
need the name of a child communication element which is not shown yet, you might have map the
parent to a signal group first.

You can also just use the examples above and replace the names with the names of your component,
port and communication element.

AI: The following getter methods might be useful (see Javadoc of the method for more de-
tails):

• SICommunicationElement.getFullyQualifiedName()

5.10.4.22 Best Practice And Further Examples

Create Selection Based on Existing Elements Most selection APIs offer a put method at the
selector. This method allows us to put elements into a selection and continue working with elements
we already have created or selected previously. The purpose of that is to optimize performance,
avoid defining the same predicates over and over again and increase the level of control.

© 2025, Vector Informatik GmbH 294 of 387

Chapter 5. AutomationInterface API Reference

import com. vector .cfg. sysdesc .model. component . origin . SIOriginComponentPort
import com. vector .cfg. sysdesc .model. connector . SIConnector
import com. vector .cfg. sysdesc .model. component . SIComponentPort

scriptTask (" createAndConnectDelegationPort ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

List < SIComponentPort > createdDelegationPorts = selectOriginComponentPorts
{
// select some origin context ports
provided ()
innerTopLevelDelegation ()

}. createFlatExtractDelegationPorts {

// create a delegation port for each selected origin port
nameFromOriginPort { SIOriginComponentPort originPort ->

originPort . getPortName ()
}
useDefaultDirection ()

}

// now use the new ports to put them into a selection
// we want to use the auto mapper (using the origin context names) to

connect them to inner SWC ports
List < SIConnector > createdConnections = selectComponentPorts {

put(createdDelegationPorts)
// we can still use predicates here , they would be applied only to our

new ports which we put into the selection
// for example we could connect only the provided new delegation ports

here using additionally the predicate provided ()
} autoMapTo {

useOriginContextForMatch ()
}

// and finally do some reporting
for (final SIConnector connector : createdConnections) {

final SIComponentPort pPort = connector . getProviderPort ()
final SIComponentPort rPort = connector . getRequesterPort ()

scriptLogger .info(" Created new delegation port {0} and connected it to
{1}.",

pPort. isDelegationPort () ? pPort. getName () : rPort. getName (), //
our new created delegation port

pPort. isDelegationPort () ? rPort. getName () : pPort. getName ()) //
the connected inner application port

}

}
}

}
}

Listing 5.330: Create delegation ports for selected origin ports and connect them

Optimizing Performance This chapter will give some advice on what may help if the script
execution times get too high. In general we recommend to optimize the readability of your code
in first place, but in some cases when processing a large number of objects restructure the code
according to the points below may reduce the execution time of the script code.

© 2025, Vector Informatik GmbH 295 of 387

Chapter 5. AutomationInterface API Reference

Check complexity of the script code: Scripts may get slow if the code iterate over big collections
of elements and while doing that performs performance critical operations or iterates over another
big collection (nÂ2 complexity). This may be also hidden somewhere between the lines. For
example if the script needs to do many data mappings or connectors make sure you use the auto
map call directly at the selection APIs and as few times as possible or use the simple API inside
which you can put lists of elements at once instead of doing the calls for one single object after
another.

In general the script performs better, when suitable data structures are prepared first so that the
total amount of modification calls (e.g. autoMapTo(Closure) at the component port selection) at
the selection APIs can be reduced.

Do not open unnecessary transactions and not over extend usage of transactions: Each trans-
action has an overhead, for example the validation results needs to be updated. So avoid opening
multiple transactions if there is no benefit for you by doing that. A good example is if you want
to create 500 data mappings. You can do every single mapping in an own transaction or all in
one transaction. If you do not need the undo operation for every single mapping separately, you
should always prefer to do all 500 mappings in one transaction.

Narrow down selections where possible without significant effort: For example when you con-
nect ports and you have many already connected ports which you do not care about, use the
unmapped predicate to not selecting them at all. The auto mapper will have to match less ele-
ments.

Prefer reusing elements over selecting elements: Let’s assume you have created new delegation
ports and want to connect them to other component ports. After creating the new ports use the
returned list and put it into the component port selection to connect them. This will be more
efficient then defining predicates that match to that newly created ports.

Use @CompileStatic for advanced filters: If your scripts use advanced filters whose closures
need to be evaluated a large number of times, the code should be refactored so that the closure is
built by an own method which uses @CompileStatic. That makes the advanced filter faster, since
the closure needs to be compiled only one single time.

Avoid switching very often between selecting and creating elements We use internal caches
for many attributes and dependencies between elements which needs to be invalidated every time
when model changes are performed. So if your selection does not depend on the model changes
which you want to do in next steps, prefer to select all elements you need first and then start
modifying the model.

So for example instead of:

• select communication elements for sender receiver data mappings

• create sender receiver data mappings

• select operation communication elements for client server data mappings

• create client server data mappings

The following workflow will use the caches more efficient:

© 2025, Vector Informatik GmbH 296 of 387

Chapter 5. AutomationInterface API Reference

• select communication elements for sender receiver data mappings

• select operation communication elements for client server data mappings

• create sender receiver data mappings

• create client server data mappings

5.10.4.23 Access to CEState of SI Model elements

For the domain model objects of the runtime system domain, the CEState can be retrieved via
the underlying MDF object. So, first call getMdfObject at the according model abstraction and
then call the getCEState getter. The CEState helps to identify if the object can be changed or
deleted.

For example when deleting data mappings, some of them might have been created in the DaVinci
Developer workspace and therefore cannot be deleted in Cfg5.

import com. vector .cfg. sysdesc .model. communication . SICommunicationElement
import com. vector .cfg. sysdesc .model. datamapping . SIDataMapping
import com. vector .cfg.model.mdf.ar4x. systemtemplate . datamapping . MIDataMapping

scriptTask (" DeleteDataMappingDependingOnCEState ", DV_PROJECT){
code {

transaction {
domain . runtimeSystem {

def selectedComElements = selectCommunicationElements {
}. getCommunicationElements ()

for (SICommunicationElement comElement : selectedComElements) {
for (SIDataMapping dataMapping : comElement . getDataMapping ())

{
// to get the CEState we need the underlying MDF object
MIDataMapping mdfDataMapping = (MIDataMapping) dataMapping
// now get CEState of MDF object
// if the Data Mapping is from DaVinci DEV workspace
// the CEState would return 'false ' here
if (mdfDataMapping . getCeState (). isDeletable ()) {

mdfDataMapping . delete ()
}

}
}

}
}

}
}

Listing 5.331: Evaluate CEState of Data Mapping

5.10.5 Crypto Domain
The crypto domain API is specifically designed to support crypto related use cases. It is available
from the com.vector.cfg.automation.scripting.base.IAutomationContext.IDomainApi 5.10
on page 161 in the form of the ICryptoApi interface.

getCrypto allows accessing the ICryptoApi like a property.

crypto(Transformer) allows accessing the ICryptoApi in a scope-like way.

© 2025, Vector Informatik GmbH 297 of 387

Chapter 5. AutomationInterface API Reference

The ICryptoApi is an API for accessing crypto handling interfaces and setting up jobs and keys
in an easier way.

Create Empty Job createEmpyJob() Creates an empty job in the crypto domain.

Create Empty Key createEmptyKey() Creates an empty key in the crypto domain.

Create Primitive createPrimitive(String, String, String, String,String) Creates a new
primitive object with the given parameters.

Create Job createJob(String, String, String, String) Creates a new job object with the
given parameters.

Set Job Priority setJobPriority(String, int) Sets the priority of the job object identified by
its jobByName.

Set Use Port setUsePort(String, boolean)Sets the use port flag of the job object identified
by its jobByName.

© 2025, Vector Informatik GmbH 298 of 387

Chapter 5. AutomationInterface API Reference

5.11 Unresolved Reference API
The Unresolved Reference APIs are specifically designed to manage unresolved references in specific
scopes.

The Unresolved Reference API is the entry point for accessing the unresolved references. It is
available on IProject instances.

The IUnresolvedReferenceApi provides the methods to access the different APIs which are de-
signed to manage unresolved references of specific scopes. For an example see the IEcucUnre-
solvedReferenceApi 5.11.1.

IProjectApi.getUnresolvedReferences() allows accessing the IUnresolvedReferenceApi like
a property.

scriptTask ('AccessAsPropertyTask ') {
code {

// IUnresolvedReferenceApi is available as unresolvedReferences property
def unresolvedReferencesApi = unresolvedReferences

}
}

Listing 5.332: Accessing IUnresolvedReferenceApi as a property

IProjectApi.unresolvedReferences(Transformer) allows accessing the IUnresolvedRefer-
enceApi in a scope-like way.

scriptTask ('AccessLikeScopeTask ') {
code {

unresolvedReferences {
// IUnresolvedReferenceApi is available inside this Closure

}
}

}

Listing 5.333: Accessing IUnresolvedReferenceApi in a scope-like way

5.11.1 Active ECUC Unresolved Reference API
The ECUC Unresolved Reference Api is specifically designed to read and edit unresolved references
of the active ECUC.

getActiveEcuc() allows accessing the IEcucUnresolvedReferenceApi like a property.

scriptTask ('AccessApiAsPropertyTask ') {
code {

def ecucUnresolvedReferenceApi = unresolvedReferences . activeEcuc
}

}

Listing 5.334: Accessing IEcucUnresolvedReferenceApi as a property.

© 2025, Vector Informatik GmbH 299 of 387

Chapter 5. AutomationInterface API Reference

activeEcuc(Transformer) allows accessing the IEcucUnresolvedReferenceApi in a scope-like
way.

scriptTask ('AccessApiLikeScopeTask ') {
code {

unresolvedReferences . activeEcuc {
// IEcucUnresolvedReferenceApi is available inside this Closure

}
}

}

Listing 5.335: Accessing IEcucUnresolvedReferenceApi in a scope-like way.

5.11.1.1 Selecting unresolved references

select(Action) allows the selection of all unresolved references of the active ECUC using pred-
icates. The returned selection is read only. Use selectChangeable(Action) for changes. The
selection is returned by an IEcucUnresolvedReferenceSelection.

selectChangeable(Action) allows the selection of the changeable unresolved references of the
active ECUC using predicates. The selection is returned by an IChangeableEcucUnresolvedRef-
erenceSelection.

Examples

scriptTask ('SelectAllReferencesTask ') {
code {

def selection = unresolvedReferences . activeEcuc . select {
// filters can be set here

}
}

}

Listing 5.336: Get a filtered set of all unresolved references at the ECUC configuration.

scriptTask ('SelectAllReferencesExampleTask ') {
code {

def selection = unresolvedReferences . activeEcuc . select {
owner (~ ".*/ Rte/Com /.*")

}
}

}

Listing 5.337: Get a filtered set of all unresolved references at the ECUC configuration with a
specific pattern at the owner path.

scriptTask ('SelectChangeableTask ') {
code {

def selection = unresolvedReferences . activeEcuc . selectChangeable {
// filters can be set here

}
}

}

Listing 5.338: Get a filtered set of the changeable unresolved references at the ECUC configuration.

© 2025, Vector Informatik GmbH 300 of 387

Chapter 5. AutomationInterface API Reference

Predicates Predicates can be set by several methods. These can be used to filter the unresolved
references.

• reference(String) filters the unresolved references by the reference path as String.

• reference(Pattern) filters the unresolved references by the reference path as a pattern.

• owner(MIObject) filters the unresolved references by the owner object.

• owner(String) filters the unresolved references by the exact owner path string.

• owner(Pattern) filters the unresolved references by the owner as a pattern.

• container(MIContainer) filters the unresolved references by a container. This container
contains the referenced elements of the filtered references.

5.11.1.2 Set changeable unresolved references

setCommonReferencePath(AsrPath) sets a common reference for all filtered unresolved refer-
ences.

setReferencesByFunction(Function) sets a common reference for all filtered unresolved refer-
ences by using a String -> String function.

replaceInReferences(String, String) sets a new reference for all unresolved references of the
selection by replacing an included string.

replacePrefixInReferences(String, String) sets a new reference for all unresolved references
of the selection by replacing a prefix of the unresolved references.

Examples

scriptTask ('SetChangeableTask '){
code{

def selection = unresolvedReferences . activeEcuc . selectChangeable {
// filters can be set here

}
transaction {

// this path is a created AsrPath as an example . Use a valid path
instead .

def path = AsrPath . create ("/ Changed / Reference ")
selection . setCommonReferencePath (path)

}
}

}

Listing 5.339: Set changeable unresolved references.

scriptTask ('ReplaceInChangeableTask '){
code{

def selection = unresolvedReferences . activeEcuc . selectChangeable {
// filters can be set here

}
transaction {

selection . replaceInReferences (" MICROSAR ", "OTHER")
}

}
}

Listing 5.340: Replace ’MICROSAR’ with ’OTHER’ in all changeable unresolved references.

© 2025, Vector Informatik GmbH 301 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('ReplacePrefixInChangeableTask '){
code{

def selection = unresolvedReferences . activeEcuc . selectChangeable {
// filters can be set here

}
transaction {

selection . replacePrefixInReferences ("/ MICROSAR ", "/OTHER")
}

}
}

Listing 5.341: Replace the prefix ’/MICROSAR’ with ’/OTHER’ in all changeable unresolved
references.

© 2025, Vector Informatik GmbH 302 of 387

Chapter 5. AutomationInterface API Reference

5.12 Persistency
The persistency API provides methods which allow to import and export model data from and
to files. The files are normally in the AUTOSAR .arxml format.

5.12.1 Model Export
The modelExport allows to export MDF model data into .arxml files. To access the export
functionality use one of the getModelExport() or modelExport(Closure) methods.

// You can access the API in every active project
def exportApi = persistency . modelExport

//Or you use a closure
persistency . modelExport {
}

Listing 5.342: Accessing the model export persistency API

5.12.1.1 Export ActiveEcuc

The method exportActiveEcucToFile(Object) exports the whole ActiveEcuC configuration into
a single file of type Path specified by the user.

scriptTask ('taskName ') {
code {

def destinationFile // Define the file to export into ...
Path resultFile = persistency . modelExport . exportActiveEcucToFile (

destinationFile)
}

}

Listing 5.343: Export the ActiveEcuc to a file

The method exportActiveEcuc(Object) exports the whole ActiveEcuC configuration into a single
file of type Path in the folder specified by the user.

scriptTask ('taskName ') {
code {

def tempExportFolder // Define the folder to export into ...
Path resultFile = persistency . modelExport . exportActiveEcuc (

tempExportFolder)
}

}

Listing 5.344: Export the ActiveEcuc into a folder

5.12.1.2 Export PostBuild Variants (Post-build selectable)

The method exportPostBuildVariants(Object) exports the PostBuild variants info into the
given folder specified by the user. This will export the ActiveEcuc and miscellaneous data. The
ActiveEcuC is exported into one file per variant (even for split projects), named as <project-
name>.<variant-name>.ecuc.arxml. Miscellaneous data is exported into one file per variant,
named as <project-name>.<variant-name>.misc.arxml.

The files contain all data of the project except:

© 2025, Vector Informatik GmbH 303 of 387

Chapter 5. AutomationInterface API Reference

• ModuleConfigurations, ModuleDefinitions

• BswImplementations, EcuConfigurations

• Variant information like EvaluatedVariantSet

The method returns a List<Path> of exported files.

scriptTask ('taskName ') {
code {

persistency . modelExport {
def tempExportFolder = paths. resolveTempPath (".")
List <Path > fileList = exportPostBuildVariants (tempExportFolder)

}
}

}

Listing 5.345: Export a PostBuild project into files per predefined variant

5.12.1.3 Export PreBuild Variants

The method exportPreBuildVariants(Object) exports the PreBuild variants info into the given
folder specified by the user. This will export the ActiveEcuc and miscellaneous data. The Ac-
tiveEcuC is exported into one file per variant (even for split projects), named as <project-
name>.<variant-name>.ecuc.arxml. Miscellaneous data is exported into one file per variant,
named as <project-name>.<variant-name>.misc.arxml.

The files contain all data of the project except:

• ModuleConfigurations, ModuleDefinitions

• BswImplementations, EcuConfigurations

The method returns a List<Path> of exported files.

scriptTask ('taskName ') {
code {

persistency . modelExport {
def tempExportFolder = paths. resolveTempPath (".")
List <Path > fileList = exportPreBuildVariants (tempExportFolder)

}
}

}

Listing 5.346: Export a PreBuild project into files per predefined variant

5.12.1.4 Export Module Configuration

The method exportModelTree(Object, MIObject, MIObject...) exports the specified model
objects and their subtrees into a single file of type Path in the folder specified by the user.

© 2025, Vector Informatik GmbH 304 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ') {
code {

Path location = paths. resolveScriptPath (".")
def moduleList = mdfModel ("EcuC")
MIModuleConfiguration ecuC = moduleList . getFirst ()
Path resultFile = persistency . modelExport . exportModelTree (location , ecuC)

}
}

Listing 5.347: Exports a module configuration

5.12.1.5 Advanced Exports

The advanced export use case provides access to multiple IModelExporter for special export use
cases like exporting the system description for the RTE.

Normally you would retrieve an IModelExporter by its ID via getExporter(String). Each
exporter also provides multiple export methods, for example

• IModelExporter.export(Object, Object...) to export the model or

• IModelExporter.exportAsPostBuildVariants(Object, Object...) to export the model
divided into files per PostBuild predefined variant.

You can retrieve a list of supported exporters from method getAvailableExporter(). The list
can differ based on the loaded data in your project.

scriptTask ('taskName ') {
code {

def tempExportFolder = paths. resolveTempPath (".")

// Export with an exporter in one line
persistency . modelExport [" activeEcuc "]. export (tempExportFolder)

}
}

Listing 5.348: Export the project with an exporter into a folder

scriptTask ('taskName ') {
code {

def tempExportFolder = paths. resolveTempPath (".")
persistency . modelExport ['everything ']. exportAsPreBuildVariants (

tempExportFolder)
}

}

Listing 5.349: Export the prebuild variants with an exporter into a folder

© 2025, Vector Informatik GmbH 305 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ') {
code {

def tempExportFolder = paths. resolveTempPath (".")

def fileList
// Switch to the persistency export API
persistency . modelExport {

// The getAvailableExporter () returns all exporters in the system
def exporterList = getAvailableExporter ()

// Select an exporter by its ID
def exporterOpt = getExporter (" activeEcuc ")

exporterOpt . ifPresent { exporter ->
// Export into folder , if exporter exists
fileList = exporter . export (tempExportFolder)

}
}

}
}

Listing 5.350: Export the project with an exporter and checks

Export a Model Tree The method exportModelTreeToFile(Object, MIObject, MIObject...)
exports the specified model objects and their subtrees into a single file of type Path specified by
the user.
scriptTask ('taskName ') {

code {
def destinationFile // Define the file to export into ...
MIARPackage autosarPkg = mdfModel (AsrPath . create ("/ MICROSAR "))

persistency . modelExport {
def resultPath = exportModelTreeToFile (destinationFile , autosarPkg)

}
}

}

Listing 5.351: Export an AUTOSAR package into a file

The method exportModelTree(Object, MIObject, MIObject...) exports the specified model
objects and their subtrees into a single file of type Path in the folder specified by the user.

scriptTask ('taskName ') {
code {

def exportFolder = paths. resolveTempPath (".")
MIARPackage autosarPkg = mdfModel (AsrPath . create ("/ MICROSAR "))

def resultFile = persistency . modelExport . exportModelTree (exportFolder ,
autosarPkg)

}
}

Listing 5.352: Export an AUTOSAR package into a folder

Export a Model Tree including all referenced Elements You could also export model trees
including all referenced elements with the exporter modelTreeClosure:

© 2025, Vector Informatik GmbH 306 of 387

Chapter 5. AutomationInterface API Reference

scriptTask ('taskName ') {
code {

def exportFolder = paths. resolveTempPath (".")
MIARPackage microsarPkg = mdfModel (AsrPath . create ("/ MICROSAR "))
MIARPackage autosarPkg = mdfModel (AsrPath . create ("/ AUTOSAR "))

persistency . modelExport [" modelTreeClosure "]. export (exportFolder ,
autosarPkg , microsarPkg)

}
}

Listing 5.353: Exports two elements and all referenced elements

Usage of Exporter Arguments You can use withExporterArgs(Map, Transformer) to specify
exporter arguments like in the command line with –exporterArgs argument. The key is the
exporter ID, the value are the arguments to the exporter. See command line help for details.

persistency . modelExport {
// Specify the arguments with exporterId : " arguments "
withExporterArgs (modelTree : "--element / MICROSAR ") {

// Call any export code with the active arguments .
getExporter (" modelTree ").get (). exportToFile (destinationFile)

}
}

Listing 5.354: Use exporter arguments like in the commandline

5.12.2 Model Import
To access the import functionality use one of the getModelImport() or modelImport(Transformer)
methods.
// You can access the API in every active project
def importApi = persistency . modelImport

//Or you use a closure
persistency . modelImport {

}

Listing 5.355: Accessing the model import persistency API

5.12.2.1 Module Configuration Import

To access the module import functionality use one of the importModuleConfigurations meth-
ods.
def importFile // Define input file ...
// You can access the API inside the closure
persistency . modelImport {

importModuleConfigurations (importFile)
}

Listing 5.356: Accessing the import module configuration persistency API

© 2025, Vector Informatik GmbH 307 of 387

Chapter 5. AutomationInterface API Reference

The method importModuleConfigurations(Path) imports MIModuleConfiguration from the
specified .arxml file into the current ActiveEcuC.

The method importModuleConfigurations(Path, Action) imports MIModuleConfiguration from
the specified .arxml file into the current ActiveEcuC. The Closure can be used to specify the im-
port mode and filter if necessary.

The method importModuleConfigurations(List) imports MIModuleConfiguration from the
specified .arxml files into the current ActiveEcuC.

The method importModuleConfigurations(List, Action) imports MIModuleConfiguration from
the specified .arxml files into the current ActiveEcuC. The Closure can be used to specify the im-
port mode and filter if necessary.

5.12.2.2 Specify Import Mode and Module Filter

Use the methods addToModel(Action), replaceInModel(Action) and mergeIntoModel(Action)
to specify an import mode.

• The method replaceInModel(Action) (this is the default mode) replaces already existing
module configurations with the imported one.

• The method addToModel(Action) adds new module configurations to the model. The se-
lected module configurations must not yet exist.

• The method mergeIntoModel(Action) merges the selected modules into the model. If the
selected module does not yet exist, it behaves the same as addToModel(Action). Other-
wise, the imported configuration will be merged into the existing module. On conflicts, the
imported data will replace the existing data.

To specify a filter for the module configurations to import use one of the methods:

• module(DefRef) Use a single DefRef

• module(List) Use a list of AsrPath, DefRef or Definition Refs as String

• module(AsrPath) Use a single AsrPath

• module(String) Use a single Definition Ref as String

© 2025, Vector Informatik GmbH 308 of 387

Chapter 5. AutomationInterface API Reference

// You can access the API inside the closure
def importFile = paths. resolvePath ("./ ImportFile .arxml")
persistency . modelImport {

importModuleConfigurations (importFile) {
// add module configurations to the current ActiveEcuC
addToModel () {

module ("/ MICROSAR /LinIf") // -> filter on DefRef as String
def linNmAsrPath = AsrPath . create ("/ ActiveEcuC /LinNm")
module (linNmAsrPath) // -> filter on Autosar path as AsrPath instance

}
// replace already existing module configurations in the current

ActiveEcuC
replaceInModel () {

List <String > modulesToImport = Arrays . asList ("/ MICROSAR /LinSM")
module (modulesToImport) // filter on list of DefRef as String

}
mergeIntoModel () {

// add modules to merge
}

}
}

Listing 5.357: Specify the module configuration import mode and filter

© 2025, Vector Informatik GmbH 309 of 387

Chapter 5. AutomationInterface API Reference

5.13 Compare and Merge
The “Compare and Merge” feature is an essential tool for managing and integrating changes in
projects. It allows developers to identify differences between various versions of files or projects
and merge them efficiently. This feature plays a crucial role in collaborative development by
highlighting conflicts and facilitating the merging of changes.

5.13.1 Read Only Project Comparison
The ’Read Only Project Comparison’ feature allows developers to compare different versions of files
or projects without the ability to merge changes. This feature is particularly useful for reviewing
changes, understanding differences, ensuring quality before any integration occurs and creating
own reports.

5.13.1.1 Structure

The entry point for the read only project comparison is the project service IProjectCom-
pare.

Figure 5.12: Structure of the read only project comparison interfaces

5.13.1.2 Accessing the API

In order to access the read only project compare API the project service IProjectCompare is
used.

© 2025, Vector Informatik GmbH 310 of 387

Chapter 5. AutomationInterface API Reference

IProjectCompare projectCompare = projects . activeProject . projectContext [
IProjectCompare]

IProjectCompareConfigBuilder configBuilder = projectCompare .
newProjectCompareConfigBuilder (projectToCompareWith)

IProjectCompareResult result = projectCompare . compare (configBuilder .build ())
def differences = result . getDifferences ()

def autosarLinkAndTypeOfDifferences = differences . collect { difference ->
[difference . autosarObjectLink , difference .type]

}

Listing 5.358: The general usage of the read only project comparison API

5.13.1.3 IProjectCompare

Represents the entry point for the read only project compare API. To configure the API use
IProjectCompareConfigBuilder which can be created via

IProjectCompare.newProjectCompareConfigBuilder(Object).

The compare operation can be executed by calling

IProjectCompare.compare(IProjectCompareConfig)

with the created IProjectCompareConfig.

Creating new comparison config builder newProjectCompareConfigBuilder(Object) creates
a new builder instance for the IProjectCompareConfig. Supported are:

• Absolute paths

• Relative paths are resolved to the location of the script

Executing the comparison compare(IProjectCompareConfig) executes the compare operation
with the given IProjectCompareConfig.

5.13.1.4 IProjectCompareConfigBuilder

Represents the configuration builder for the read only project compare operation. To create an
instance use IProjectCompare.newProjectCompareConfigBuilder(Object).

Compare only distinct module configurations addModulesToCompare(List) adds the short
names of the module configurations to compare.

Build comparison config build() builds the IProjectCompareConfig containing all the settings
made so far.

5.13.1.5 IProjectCompareResult

Represents the result of a read-only project comparison.

© 2025, Vector Informatik GmbH 311 of 387

Chapter 5. AutomationInterface API Reference

Retrieving the found differences getDifferences() gets the collection of found differences.

5.13.1.6 IProjectCompareDifference

Represents a read-only difference resulting from the comparison of projects.

The ID of the difference getId() gets the ID of the difference. This ID is based on the path of
the associated element. E.g.

• /Root/AUTOSAR/ActiveEcuC/EcuC/EcucPduCollection/PduB

• /Root/EcuC/EcucPduCollection/PduB

The name of the difference getName() gets the name of the corresponding element. E.g.

PduB

The type of the difference getType() gets the type of the difference indicating that an element
is only available in one of the projects or an element is changed.

The AsrObjectLink of the difference getAutosarObjectLink() gets the AsrObjectLink for
the corresponding element of the difference. This method takes into account that the associated
model element is not available (only in mine / only in other). In case mine is available the link of
mine is returned otherwise other is used.

The values of the difference getValues() gets the values of the difference.

5.13.1.7 IDifferenceValues

Represents the values in the projects of a difference.

The value in project Ours getOurs() gets the value of project Ours.

The value in project Theirs getTheirs() gets the value of project Theirs.

5.13.1.8 Examples

To take only one specific module into account in the comparison, this must already be specified in
the comparison configuration: IProjectCompareConfigBuilder.addModulesToCompare

© 2025, Vector Informatik GmbH 312 of 387

Chapter 5. AutomationInterface API Reference

IProjectCompare projectCompare = projects . activeProject . projectContext [
IProjectCompare]

IProjectCompareConfigBuilder configBuilder = projectCompare .
newProjectCompareConfigBuilder (projectToCompareWith)

// We only want to compare 'EcuC ' module configuration
configBuilder . addModulesToCompare (List.of("EcuC"))

IProjectCompareResult result = projectCompare . compare (configBuilder .build ())
def differences = result . getDifferences ()

def nameAndTypeOfDifferences = differences . collect { difference ->
[difference .name , difference .type]

}

Listing 5.359: Specifying a filter for module configurations

5.13.2 Auto merge
The auto merge functionality allows changes from various sources to be automatically merged
without the need for manual intervention. This feature is particularly useful in collaborative
environments where multiple developers work on the same project simultaneously.

5.13.2.1 Structure

The entry point for the auto merge is the project service IAutomerge.

Figure 5.13: Structure of the auto merge interfaces

5.13.2.2 Accessing the API

In order to access the auto merge API the project service IAutomerge is used.

© 2025, Vector Informatik GmbH 313 of 387

Chapter 5. AutomationInterface API Reference

IAutomerge automerge = projects . activeProject . projectContext [IAutomerge]
IAutomergeConfigBuilder configBuilder = automerge . newAutomergeConfigBuilder (

projectToCompareWith , projectBase)

automerge .merge(configBuilder .build ())

Listing 5.360: The general usage of the auto merge API

5.13.2.3 IAutomerge

Represents the entry point for the auto merge API. To configure the API use IAutomergeConfig-
Builder which can be created via IAutomerge.newAutomergeConfigBuilder(Object, Object).
The merge operation can be executed by calling IAutomerge.merge(IAutomergeConfig) with the
created IAutomergeConfig.

Creating new auto merge config builder newAutomergeConfigBuilder(Object, Object) cre-
ates a new builder instance for the auto merge configuration. Supported are:

• Absolute paths

• Relative paths are resolved to the location of the script

Executing the auto merge merge(IAutomergeConfig) executes the auto merge operation with
the given IAutomergeConfig.

5.13.2.4 IAutomergeConfigBuilder

Represents the configuration builder for the auto merge operation. To create an instance use
IAutomerge.newAutomergeConfigBuilder(Object, Object) .

Merge only distinct module configurations addModulesToMerge(List) adds the short names
of the module configurations to merge.

Conflict resolution setConflictResolutionStrategy(EConflictResolutionStrategy) sets the
conflict resolution strategy which is used in case a conflict is detected (e.g. use value of ’Theirs’
or ’Ours’).

Include DefRefs addDefRefsToInclude(List) adds the DefRefs of the elements to merge.

Exclude DefRefs addDefRefsToExclude(List) adds the DefRefs of the elements to exclude
from merge.

Create XML report setCreateXmlReport() sets a flag which indicates that a XML report should
be created. Please note that the structure of this report may change from version to version.

© 2025, Vector Informatik GmbH 314 of 387

Chapter 5. AutomationInterface API Reference

Create HTML report setCreateHtmlReport() sets a flag which indicates that a HTML report
should be created. Note that in this case an XML report is also created as the HTML is cre-
ated based on this. Please note that the structure of this report may change from version to
version.

Build comparison config build() builds the IAutomergeConfig containing all the settings made
so far.

For details about the possible filter use cases see also 5.13.2.7.

5.13.2.5 IAutomergeResult

Represents the result of an auto merge operation.

Path to XML report getPathToXmlReport() gets the path to the generated XML report for
not merged differences. See also IAutomergeConfigBuilder.setCreateXmlReport().

Path to HTML report getPathToHtmlReport() gets the path to the generated HTML report
for not merged differences. See also IAutomergeConfigBuilder.setCreateHtmlReport().

Differences which couldn’t be merged getNotAutomergeableDifferences() gets the differ-
ences which couldn’t be merged during the auto merge operation.

5.13.2.6 INotAutomergeableDifference

Represents a difference which couldn’t be auto merged as an result of the auto merge opera-
tion.

The AUTOSAR object link getAsrObjectLink() gets the link to the model element. Note that
the link might point to a model element which is not available in the project.

The not merged reasons getReasons() gets the reason(s) why the auto merge was not able to
merge the difference.

5.13.2.7 Filter Use Cases

With the existing filter options, there are numerous possibilities which will be explained here in
detail using examples. Please note that the code shown in the user note of the images is
just pseudocode.

No filter specified In case no filter is specified all available module configuration are considered
during auto merge.

© 2025, Vector Informatik GmbH 315 of 387

Chapter 5. AutomationInterface API Reference

Figure 5.14: Auto merge without any filter specified

Short name of module configuration In case the user specified a distinct module configuration short
name only the corresponding module configuration is considered.

Figure 5.15: Auto merge with short name of module configuration

Include DefRef In case the user specified a distinct (including) DefRef only elements matching this
DefRef are considered.

© 2025, Vector Informatik GmbH 316 of 387

Chapter 5. AutomationInterface API Reference

Figure 5.16: Auto merge with including DefRef

Short name of module configuration and include DefRef It’s also possible to combine filters like
module configuration short name and an include DefRef. Here is an important edge case if the
user specified a module configuration short name and a DefRef pointing to the same module
configuration. In this case the merge only considers elements matching the specified DefRef.

Figure 5.17: Auto merge with module configuration short name and include DefRef

Exclude DefRef In case the user specified a distinct (excluding) DefRef these elements and the
sub-elements are ignored. It’s not possible to include an element below an excluded element.

© 2025, Vector Informatik GmbH 317 of 387

Chapter 5. AutomationInterface API Reference

Figure 5.18: Auto merge with excluding DefRef

5.13.3 Unified Diff
The Unified Diff format is a widely used format for displaying differences between two versions of a
file. It was developed to present differences in a compact and clear manner by omitting redundant
context lines and highlighting only the relevant changes. This format is commonly used in version
control systems like Git, Subversion, and others to track changes in source code and other text
files.

The Unified Diff format offers several advantages:

• Compactness: By omitting redundant lines, the size of diff files is reduced.

• Readability: Changes are presented in a clear and understandable format, making it easier
to review and track modifications.

• Compatibility: It is compatible with many tools and systems that can process and apply
diffs.

5.13.3.1 Structure

The entry point for the unified diff creation is the project service IUnifiedDiff.

© 2025, Vector Informatik GmbH 318 of 387

Chapter 5. AutomationInterface API Reference

Figure 5.19: Structure of the unified diff creation interfaces

5.13.3.2 Accessing the API

In order to access the unified diff creation API the project service IUnifiedDiff is used.

IUnifiedDiff unifiedDiff = projects . activeProject . projectContext [IUnifiedDiff]
def resultFile = tempFolder . resolve (" MyUnified .diff")
IUnifiedDiffConfigBuilder configBuilder = unifiedDiff . newUnifiedDiffConfigBuilder (

projectToCompareWith , resultFile)
unifiedDiff . create (configBuilder .build ())

Listing 5.361: The general usage of the unified diff API

5.13.3.3 IUnifiedDiff

Represents the entry point for the unified diff API. To configure the API use IUnifiedDiffConfig-
Builder which can be created via IUnifiedDiff.newUnifiedDiffConfigBuilder(Object, Ob-
ject). The create operation can be executed by calling IUnifiedDiff.create(IUnifiedDiffConfig)
with the created IUnifiedDiffConfig.

Creating new comparison config builder newUnifiedDiffConfigBuilder(Object, Object) cre-
ates a new builder instance for the unified diff configuration. It’s expected that the unified diff
result file ends with the ’.diff’ file extension. Supported are:

• Absolute paths

• Relative paths are resolved to the location of the script

Executing the comparison create(IUnifiedDiffConfig) executes the unified diff creation with
the given IUnifiedDiffConfig.

5.13.3.4 IUnifiedDiffConfigBuilder

Represents the configuration builder for the unified diff creation operation. To create an instance
use IUnifiedDiff.newUnifiedDiffConfigBuilder(Object, Object).

© 2025, Vector Informatik GmbH 319 of 387

Chapter 5. AutomationInterface API Reference

Compare only distinct module configurations addModulesToCompare(List) adds the short
names of the module configurations to compare.

Build comparison config build() builds the IUnifiedDiffConfig containing all the settings
made so far.

5.13.3.5 IUnifiedDiffResult

Represents the result of a unified diff.

This interface currently contains no fields or members but has already been made available for
compatibility reasons.

5.14 Project Update API
The IProjectUpdateApi provides methods for updating the project configuration..

applyInputFileChanges Applies input file changes to the project. It runs the background vali-
dation and solves designated solving actions for the project.

updateRteConfiguration Updates the Rte configuration for the current state of the system de-
scription:

• Synchronizes existence of RteSwComponentInstance and RteSwComponentType container
for each used atomic software component.

• Synchronizes existence of RteEventToTaskMapping container for each RTEEvent of each
used atomic software component.

• Synchronizes existence of RteExclusiveAreaImplementation container for each exclusive area
of each used atomic software component.

• Synchronizes existence of RteNvRamAllocation container for each NvBlockNeeds/NvBlock-
Descriptor of each used atomic software component.

automaticReferenceCorrection Automatically correct references in the project.

applyEvaluatedVariantSetChanges Cleans up the model after the EvaluatedVariantSet has been
changed.

See examples below to call the Project Update API.

scriptTask (" ProjectUpdate ", DV_PROJECT) {
code {

activeProject {
projectUpdate {

applyInputFileChanges ()
updateRteConfiguration ()
automaticReferenceCorrection ()
applyEvaluatedVariantSetChanges ()

}
}

}
}

Listing 5.362: Project Update API

© 2025, Vector Informatik GmbH 320 of 387

Chapter 5. AutomationInterface API Reference

5.15 Utilities
5.15.1 Converters
General purpose converters (java.util.Functions) for performing value conversions throughout
the automation interface are provided. These converters are referenced from the AutomationIn-
terface documentation wherever they apply. The AutomationInterface is typed strongly. In some
cases, however, e.g. when specifying file locations, it is desirable to allow for a range of possibly
parameter types. This is achieved by accepting parameters of type Object and converting the
given parameters to the desired type.

The following converters are provided:

ScriptConverters.TO_PATH Attempts to convert arbitrary Objects to Paths using
IAutomationPathsApi.resolvePath(Object) 5.4.3.2 on page 40.

ScriptConverters.TO_SCRIPT_PATH Attempts to convert arbitrary Objects to Paths using
IAutomationPathsApi.resolveScriptPath(Object) 5.4.3.3 on page 41.

ScriptConverters.TO_VERSION Attempts to convert arbitrary Objects to IVersions. The
following conversions are implemented:

• For null or IVersion arguments the given argument is returned. No conversion is applied.

• Strings are converted using Version.valueOf(String).

• Numbers are converted by converting the int obtained from Number.intValue() using Ver-
sion.valueOf(int).

• All other Objects are converted by converting the String obtained from Object.toString().

ScriptConverters.TO_BIG_INTEGER Attempts to convert arbitrary Objects to BigIntegers.
The following conversions are implemented:

• For null or BigInteger arguments the given argument is returned. No conversion is applied.

• Integers, Longs, Shorts and Bytes are converted using BigInteger.valueOf(long).

• All other types of objects are interpreted as Strings (Object.toString()) and passed to
BigInteger.BigInteger(String).

ScriptConverters.TO_BIG_DECIMAL Attempts to convert arbitrary Objects to Doubles. The
following conversions are implemented:

• For null or Double arguments the given argument is returned. No conversion is applied.

• Floats and Doubles, are converted using Double.valueOf(double).

• Integers, Longs, Shorts and Bytes are converted using Double.valueOf(double).

• All other types of objects are interpreted as Strings (Object.toString()) and passed to
Double.Double(String).

© 2025, Vector Informatik GmbH 321 of 387

Chapter 5. AutomationInterface API Reference

ModelConverters.TO_MDF Attempts to convert arbitrary Objects to MDFObjects. The follow-
ing conversions are implemented:

• For null or MDFObject arguments the given argument is returned. No conversion is applied.

• IHasModelObjects are converted using their IHasModelObject.getMdfObject() method.

• IViewedModelObjects are converted using their IViewedModelObject.getMdfObject() method.

• For all other Objects ClassCastExceptions are thrown.

For thrown Exceptions see the used functions described above.

© 2025, Vector Informatik GmbH 322 of 387

Chapter 5. AutomationInterface API Reference

5.16 Advanced Topics
This chapter contains advanced use cases and classes for special tasks.

For a normal script these items are not relevant.

5.16.1 Java Development
It is also possible to write automation scripts in plain Java code, but this is not recommended.
There are some items in the API, which need a different usage in Java code.

This chapter describes the differences in the Automation API when used from Java code.

5.16.1.1 Script Task Creation in Java Code

Java code could not use the Groovy syntax to provide script tasks. So another way is needed for
this. The IScriptFactory interface provides the entry point that Java code could provide script
tasks. The createScript(IScriptCreationApi) method is called when the script is loaded.

This interface is not necessary for Groovy clients.

public class MyScriptFactoryAsJavaCode implements IScriptFactory {
@ Override
public void createScript (final IScriptCreationApi creation) {

creation . scriptTask (" TaskFromFactory ", IScriptTaskTypeApi . DV_APPLICATION ,
(taskBuilder) -> {

taskBuilder .code(
(scriptExecutionContext , taskArgs) -> {

// Your script task code here
return null;

});
});

creation . scriptTask ("Task2", IScriptTaskTypeApi .DV_PROJECT ,
(taskBuilder) -> {

taskBuilder .code(
(scriptExecutionContext , taskArgs) -> {

// Your script task code for Task2 here
return null;

});
});

}
}

Listing 5.363: Java code usage of the IScriptFactory to contribute script tasks

You should try to use Groovy when possible, because it is more concise than the Java code, without
any difference at script task creation and execution.

5.16.1.2 Java Code accessing Groovy API

Most of the Automation API is usable from both languages Java and Groovy, but some methods
are written for Groovy clients. To use it from Java you have to write some glue code.

Differences are:

• Accessing Properties

• Using API entry points.

© 2025, Vector Informatik GmbH 323 of 387

Chapter 5. AutomationInterface API Reference

• Creating Closures

Accessing Properties Properties are not supported by Java so you have to use the getter/setter
methods instead.

API Entry Points Most of the Automation API is added to the object by so called DynamicOb-
jects. This is not available in Java, so you have to call IScriptExecutionContext.getInstance(Class)
instead. So if you want to access The IWorkflowApi you have to write:

// Java code:
IScriptExecutionContext scriptCtx = ...;
IWorkflowApi workflow = scriptCtx . getInstance (IWorkflowApiEntryPoint .class).

getWorkflow ()

// Instead of Groovy code:
workflow {

}

Listing 5.364: Accessing WorkflowAPI in Java code

Creating Closure instances from Java lambdas The class Closures provides API to create
Closure instances from Java FunctionalInterfaces.

The from() methods could be used to call Groovy API from Java classes, which only accepts
Closure instances.

Sample:

Closure <?> c = Closures .from ((param) -> {
// Java lambda

});

Listing 5.365: Java Closure creation sample

Creating Closure Instances from Java Methods You could also create arbitrary Closures from
any Java method with the class MethodClosure. This is describe in:
http://melix.github.io/blog/2010/04/19/coding_a_groovy_closure_in.html1

5.16.1.3 Java Code in dvgroovy Scripts

It is not possible to write Java classes when using the .dv.groovy script file. You have to create
an automation script project.

1Last accessed 2016-05-24

© 2025, Vector Informatik GmbH 324 of 387

http://melix.github.io/blog/2010/04/19/coding_a_groovy_closure_in.html

6 Data models in detail
This chapter describes several details and concepts of the involved data models. Be aware that
the information here is focused on the Java API. In most cases it is more convenient using the
Groovy APIs described in 5.6 on page 82. So, whenever possible use the Groovy API and read
this chapter only to get background information when required.

6.1 MDF model - the raw AUTOSAR data
The MDF model is being used to store the AUTOSAR model loaded from several ARXML files. It
consists of Java interfaces and classes which are generated from the AUTOSAR meta-model.

6.1.1 Naming
The MDF interfaces have the prefix MI followed by the AUTOSAR meta-model name of the class
they represent. For example, the MDF interface related to the meta-model class ARPackage (AU-
TOSAR package in the top-level structure of the meta-model) is MIARPackage. The AUTOSAR
meta model can be found for example on the AUTOSAR website.

6.1.2 The models inheritance hierarchy
The MDF model therefore implements (nearly) the same inheritance hierarchy and associations
as defined by the AUTOSAR model. These interfaces provide access to the data stored in the
model.

See figure 6.1 on the following page shows the (simplified) inheritance hierarchy of the ECUC
container type MIContainer. What we can see in this example:

• A container is an MIIdentifiable which again is a MIReferrable. The MIReferrable is the
type which holds the shortname (getName()). All types which inherit from the MIReferrable
have a shortname (MIARPackage, MIModuleConfiguration, ...)

• A container is also a MIHasContainer. This is an artificial base class (not part of the
AUTOSAR meta-model) which provides all features of types which have sub-containers.
The MIModuleConfiguration therefore has the same base type

• A container also inherits from MIHasDefinition. This is an artificial base class (not part of
the AUTOSAR meta-model) which provides all features of types which have an AUTOSAR
definition. The MIModuleConfiguration and MIParameterValue therefore has the same
base type

• All MIIdentifiables can hold ADMIN-DATA and ANNOTATIONs

• All MDF objects in the AUTOSAR model tree inherit from MIObject which is again an
MIObject

6.1.2.1 MIObject and MDFObject

The MIObject is the base interface for all AUTOSAR model objects in the DaVinci Configurator
data model. It extends MDFObject which is the base interface of all model objects. Your client code
shall always use MIObject, when AUTOSAR model objects are used, instead of MDFObject.

© 2025, Vector Informatik GmbH 325 of 387

https://www.autosar.org/

Chapter 6. Data models in detail

Figure 6.1: ECUC container type inheritance

The figure 6.2 describes the class hierarchy of the MIObject.

Figure 6.2: MIObject class hierarchy and base interfaces

6.1.3 The models containment tree
The root node of the AUTOSAR model is MIAUTOSAR. Starting at this object the complete model
tree can be traversed. MIAUTOSAR.getSubPackage() for example returns a list of MIARPackage
objects which again have child objects and so on.

Figure 6.3 on the following page shows a simple example of an MDF object containment hierarchy.
This example contains two AUTOSAR packages with module configurations below.

© 2025, Vector Informatik GmbH 326 of 387

Chapter 6. Data models in detail

Figure 6.3: Autosar package containment

In general, objects which have child objects provide methods to retrieve them.

• MIAUTOSAR.getSubPackage() for example returns a list of child packages

• MIContainer.getSubContainer() returns the list of sub-containers and
MIContainer.getParameter() all parameter-values and reference-values of a container

6.1.4 The ECUC model
The interfaces and classes which represent the ECUC model don’t exactly follow the AUTOSAR
meta-model naming. because they are designed to store AUTOSAR 3 and AUTOSAR 4 models
as well.

Affected interfaces are:

• MIModuleConfiguration and its child objects (containers, parameters, . . .)

• MIModuleDef and its child objects (containers definitions, parameter definitions, . . .)

The ECUC model also unifies the handling of parameter- and reference-values. Both, parameter-
values and reference-values of a container, are represented as MIParameterValue in the MDF
model.

6.1.5 Order of child objects
Child object lists in the MDF model have the same order as the data specified in the ARXML
files. So, loading model objects from AXRML doesn’t change the order.

© 2025, Vector Informatik GmbH 327 of 387

Chapter 6. Data models in detail

6.1.6 AUTOSAR references
All AUTOSAR reference objects in the MDF model have the base interface MIARRef and the base
generic interface MIGARRef.

Figure 6.4 shows the type hierarchy for the AUTOSAR reference.

Figure 6.4: The ECUC container definition reference

In ARXML, such a reference can be specified as:

<TYPE-TREF DEST="IMPLEMENTATION-DATA-TYPE">
/DataTypes/MyImplDataType

</TYPE-TREF>

• MIARRef.getValue() returns the AUTOSAR path of the object, the reference points to (as
specified in the ARXML file). In the example above "/DataTypes/MyImplDataType" would
be this value

• MIGARRef.getRefTarget() on the other hand returns the referenced MDF object if it exists.
This method is located in a specific, typesafe (according to the type it points to) reference
interface which extends MIARRef. So, if an object with the AUTOSAR path "/DataType-
s/MyImplDataType" exists in the model, this method will return it

6.1.7 Model changes
6.1.7.1 Transactions

The MDF model provides model change transactions for grouping several model changes into one
atomic change.

A solving action, for example, is being executed within a transaction for being able to change
model content. Validation and generator developers don’t need to care for transactions. The
tools framework mechanisms guarantee that their code is being executed in a transaction were
required.

The tool guarantees that model changes cannot be executed outside of transactions. So, for
example, during validation of model content the model cannot be changed. A model change here
would lead to a runtime exception.

6.1.7.2 Undo/redo

On basis of model change transactions, MDF provides means to undo and redo all changes made
within one transaction. A GUI can allow users to execute undo/redo on this granularity.

© 2025, Vector Informatik GmbH 328 of 387

Chapter 6. Data models in detail

6.1.7.3 Event handling

MDF also supports model change events. All changes made in the model are reported by this
asynchronous event mechanism. Validations, for example, detect this way which areas of the
model need to be re-validated. The GUI can use this mechanism to update its editors and views
when model content changes.

6.1.7.4 Deleting model objects

Model objects must be deleted by a dedicated API. In Java code that’s:
MIObject.deleteFromModel().

Deleting an object means:

• All associations of the object are deleted. The connection to its parent object, for example,
is being deleted which means that the object is not a member of the model tree anymore

• The object itself is being deleted. In fact, it is not really deleted (and garbage collected) as a
Java object but only marked as removed. Undo of the transaction, which deleted this object,
removes this marker and restores the deleted associations

6.1.7.5 Access to deleted objects

All subsequent access to content of deleted objects throws a runtime exception. Reading the
shortname of an MIContainer, for example.

6.1.7.6 Set-methods

Model interfaces provide get-methods to read model content. MDF also offers set-methods for
fields and child objects with multiplicity 0..1 or 1..1.

These set-methods can be used to change model content.

• MIARRef.getValue() for example returns a references AUTOSAR path

• MIARRef.setValue(String newValue) sets a new path

6.1.7.7 Changing child list content

MDF doesn’t offer set-methods for fields and child objects with multiplicity 0..* or 1..*. MI-
Container.getSubContainer(), for example, returns the list of sub-containers but there is no
MIContainer.setSubContainer() method to change the sub-containers.

Changing child lists means changing the list itself.

• To add a new object to a child list, client code must use the lists add() method. MICon-
tainer.getSubContainer().add(container), for example, adds a container as additional
sub-container. This added object is being appended at the end of the list

• Removing child list objects is a side-effect of deleting this object. The delete operation
removes it from the list automatically

6.1.7.8 Change restrictions

The tools transaction handling implements some model consistency checks to avoid model changes
which shall be avoided. Such changes are, for example:

© 2025, Vector Informatik GmbH 329 of 387

Chapter 6. Data models in detail

• Creating duplicate shortnames below one parent object (e.g. two sub-containers with the
same shortname)

• Changing or deleting pre-configured parameters

When client code tries to change the model this way, the related model change transaction is being
canceled and the model changes are reverted (unconditional undo of the transaction). A special
case here are solving actions. When a solving action inconsistently changes the model, only the
changes made by this solving action are reverted (partial transaction undo of one solving action
execution).

6.2 Post-build selectable
6.2.1 Model views
6.2.1.1 What model views are

After project load, the MDF model contains all objects found in the ARXML files. Variation
points are just data structures in the model without any special meaning in MDF.

If you want to deal with variants, you must use model views. A model view filters access to the
MDF model based on the variant definition and the variation points.

There is one model view per variant. If you use this variants model view, the MDF model filters
exactly what this variant contains. All other objects become invisible. When your retrieve parame-
ters of a container for example, you’ll see only parameters contained in your selected variant.
final boolean isVisible = t. paramVariantA . moIsVisible ();

Listing 6.1: Check object visibility

6.2.1.2 The IModelViewManager project service

The IModelViewManager handles model visibility in general. It provides the following means:

• Get all available variants

• Execute code with visibility of a specific predefined variant only. This means your code sees
all objects contained in the specified variant. All objects which are not contained in this
variant will be invisible

• Execute code with visibility of invariant data only (see IInvariantView).

• Execute code with unfiltered model visibility. This means that your code sees all objects
unconditionally. If the project contains variant data, you see all variants together

It additionally provides detailed visibility information for single model objects:

• Get all variants, a specific object is visible in

• Find out if an object is visible in a specific variant
final List < IPostBuildPredefinedVariantView > variants = viewMgr .

getAllPostBuildVariantViews ();

Listing 6.2: Get all available variants

© 2025, Vector Informatik GmbH 330 of 387

Chapter 6. Data models in detail

final List < IPostBuildView > allVaraintsOrInvariantView = viewMgr .
getAllPostBuildVariantViewsOrInvariant ();

Listing 6.3: Get all available variants or if project does not contain variants the invariant view

try (final IModelViewExecutionContext context = viewMgr . executeWithModelView (t.
variantViewA)) {
assertIsVisible (t. paramInvariant);
assertIsVisible (t. paramVariantA);
assertNotVisible (t. paramVariantB);

}

try (final IModelViewExecutionContext context = viewMgr . executeWithModelView (t.
variantViewB)) {
assertIsVisible (t. paramInvariant);
assertNotVisible (t. paramVariantA);
assertIsVisible (t. paramVariantB);

}

try (final IModelViewExecutionContext context = viewMgr . executeUnfiltered ()) {
assertIsVisible (t. paramInvariant);
assertIsVisible (t. paramVariantA);
assertIsVisible (t. paramVariantB);

}

Listing 6.4: Execute code with variant visibility

Important remark: It is essential that the execute...() methods are used exactly as imple-
mented in the listing above. The try (...) {...} construct is a new Java 7 feature which
guarantees that resources are closed whenever (and how ever) the try block is being left. For
details read:
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

© 2025, Vector Informatik GmbH 331 of 387

http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Chapter 6. Data models in detail

Collection < IPostBuildPredefinedVariantView > visibleVariants = viewMgr .
getVisiblePostBuildVariantViews (t. paramInvariant);

assertThat (visibleVariants .size (), equalTo (2));
assertThat (visibleVariants , containsInAnyOrder (t. variantViewA , t. variantViewB));

visibleVariants = viewMgr . getVisiblePostBuildVariantViews (t. paramVariantA);
assertThat (visibleVariants .size (), equalTo (1));
assertThat (visibleVariants , containsInAnyOrder (t. variantViewA));

Listing 6.5: Get all variants, a specific object is visible in

6.2.1.3 Variant siblings

Variant siblings of an MDF object are MDF object instances which represent the same object but
in other variants.

The method IModelVarianceAccessPublished.getPostBuildVariantSiblings() provides ac-
cess to these sibling objects:

This method returns MDF object instances representing the same object but in all variants.
The collection returned contains the object itself including all siblings from other PostBuild vari-
ants.

The calculation of siblings depends on the object-type as follows:

• Ecuc Module Configuration:
Since module configurations are never variant, this method always returns a collection which
contains the specified object only

• Ecuc Container:
For siblings of a container all of the following conditions apply:

– They have the same AUTOSAR path

– They have the same definition path (containers with the same AUTOSAR path but
different definitions may occur in variant models - but they are not variant siblings
because they differ in type)

• Ecuc Parameter:
For siblings of a parameter all of the following conditions apply:

– The parent containers have the same AUTOSAR path

– The parameter siblings have the same definition path

The parameter values are not relevant so parameter siblings may have different values.
Multi-instance parameters are special. In this case the method returns all multi-instance
siblings of all variants.

• System description object:
For siblings of MIReferrables all of the following conditions apply:

– They have the same meta-class

– They have the same AUTOSAR path

For siblings of non-MIReferrables all of the following conditions apply:

– Their nearest MIReferrable-parents are either the same object or variant siblings

– Their containment feature paths below these nearest MIReferrable-parents is equal

© 2025, Vector Informatik GmbH 332 of 387

Chapter 6. Data models in detail

Special use cases: When the specified object is not a member of the model tree (the object itself
or one of its parents has no parent), it also has no siblings. In this case this method returns a
collection containing the specified object only.

Remark concerning visibility: This method returns all siblings independent of the currently
visible objects. This means that the returned collection probably contains objects which are not
visible by the caller! It also means that the specified object itself doesn’t need to be visible for the
caller.

6.2.1.4 The Invariant model views

There are use cases which require to see the invariant model content only. One example are
generators for modules which don’t support variance at all.

There are two different invariant views currently defined:

• Value based invariance (values are equal in all variants):
The IPostBuildInvariantValuesView contains objects were all variant siblings have the
same value and exist in all variants.

• Definition based invariance (values which shall be equal in all variants):
The IPostBuildInvariantEcucDefView contains objects which are not allowed to be variant
according to the BSWMD rules.

All Invariant views derive from the same interface IInvariantView, so if you want to use an
invariant view and not specifying the exact view, you could use the IInvariantView interface.
The figure 6.5 describes the hierarchy.

Figure 6.5: Invariant views hierarchy

The PostBuild InvariantValues model view The IPostBuildInvariantValuesView contains
only elements which have one of the following properties:

• The element and no parent has any MIVariationPoint with a post-build condition

• All variant siblings have the same value and exist in all variants. Then one of the siblings is
contained in the IPostBuildInvariantValuesView

© 2025, Vector Informatik GmbH 333 of 387

Chapter 6. Data models in detail

So the semantic of the InvariantValues model view is that all values are equal in all variants.

You could retrieve an instance of IPostBuildInvariantValuesView by calling IModelViewMan-
ager. getInvariantValuesView().

IModelViewManager viewMgr =...;
IPostBuildInvariantValuesView invariantView = viewMgr .

getPostBuildInvariantValuesView ();
// Use the invariantView like any other model view

Listing 6.6: Retrieving an InvariantValues model view

Example The figure 6.6 describes an example for a module with containers and the visibility in
the IPostBuildInvariantValuesView.

• Container A is invisible because it is contained in variant 1 only

• Container B and C are visible because they are contained in all variants

• Parameter a is visible because it is contained in all variants with the same value

• Parameter b is invisible: It is contained in all variants but with different values

• Parameter c is invisible because it is contained in variant 3 only

Figure 6.6: Example of a model structure and the visibility of the IInvariantValuesView

Specification See also the specification for details of the IPostBuildInvariantValuesView.

The PostBuild Invariant EcuC definition model view The IPostBuildInvariantEcucDefView
contains the same objects as the invariant values view but additionally excludes all objects which,
by (EcuC / BSWMD) definition, support variance. Using this view you can avoid dealing with
objects which are accidentally equal by value (in your test configurations) but potentially can be
different because they support variance.

More exact the IPostBuildInvariantEcucDefView will additionally exclude elements which have
the following properties:

• If the parent module configuration specifies VARIANT-POST-BUILD-SELECTABLE as im-
plementation configuration variant

– All objects (MIContainer, MINumericalValue, ...) are excluded, which support vari-
ance according to their EcuC definition. (potentially variant objects)

© 2025, Vector Informatik GmbH 334 of 387

https://dms.vg.vector.int/sites/pes_dvt/cfg/vecDocLib/Design/Variant%20Handling/BaseFunctionality/PBS-InvariantViews.pptx

Chapter 6. Data models in detail

• If the parent module configuration doesn’t specify VARIANT-POST-BUILD-SELECTABLE
as implementation configuration variant. All contained objects do not support variance, so
the view actually shows the same objects as the IPostBuildInvariantValuesView.

The implementation configuration variant in fact overwrites the objects definition for elements in
the ModuleConfiguration.

Reasons to Use the view The EcucDef view guarantees that you don’t access potentially variant
data without using variant specific model views. So it allows you to improve code quality in your
generator.

When your test configuration for example contains equal values for a parameter which is potentially
variant you will see this parameter in the invariant values view but not in the EcucDef view.
Consequences if you access data in other module configurations: When the BSWMD file of this
other module is being changed, e.g. a parameter now supports variance, objects can become
invisible due to this change. You are forced to adapt your code then.

Usage You could retrieve an instance of IPostBuildInvariantEcucDefView by calling IMod-
elViewManager.getInvariantEcucDefView(). And then use is as any other IModelView.

IModelViewManager viewMgr =...;
IInvariantEcucDefView invariantView = viewMgr . getInvariantEcucDefView ();
// Use the invariantView like any other model view

Listing 6.7: Retrieving an InvariantEcucDefView model view

Specification See also the specification for details of the IPostBuildInvariantEcucDefView.

6.2.1.5 Accessing invisible objects

When you switch to a model view, objects which are not contained in the related variant become
invisible. This means that access to their content leads to an InvisibleVariantObjectFeature-
Exception.

To simplify handling of invisible objects, some model services provide model access even for invisible
objects in variant projects. The affected classes and interfaces are:

• com.vector.cfg.model.asr.ecuc.access.IEcucReferrableAccess

• com.vector.cfg.model.asr.ecuc.access.IEcucModelAccess

• com.vector.cfg.model.asr.ecuc.compare.IModelEquivalenceService

• com.vector.cfg.model.access.AsrPath

• com.vector.cfg.model.access.DefRef

• com.vector.cfg.model.asr.ecuc.access.ecucdefinition.IEcucDefinitionAccess (all
methods which deal with configuration side objects)

Only a subset of the methods in these services work with invisible objects (read the methods
JavaDoc for details). The general policy to select exactly these methods was:

• Support access to type and object identity of MDF objects (definition and AUTOSAR path)

© 2025, Vector Informatik GmbH 335 of 387

https://dms.vg.vector.int/sites/pes_dvt/cfg/vecDocLib/Design/Variant%20Handling/BaseFunctionality/PBS-ModelViews4Generators.pptx

Chapter 6. Data models in detail

• Parameter value or other content related information must still be retrieved in a context the
object is visible in

• Also not contained are methods which change model content. E.g. deleting invisible objects,
set parameter values, ...

6.2.1.6 IViewedModelObject

The IViewedModelObject is a container for one MIObject and an IModelView that was used when
viewing the MIObject.

The interface provides getter for the MIObject, and the IModelView which was active during
creation of the IViewedModelObject. So the IViewedModelObject represents a tuple of MIObject
and IModelView.

This could be used to preserve the state/tuple of a MIObject and IModelView, for later re-
trieval.

Examples:

• BswmdModel objects

• Elements for validation results, retrieved in a certain view

• Model Query API like ModelTraverser, to preserve IModelView information

Notes:
A IViewedModelObject is immutable and will not update any state. Especially not when the visi-
bility of the getMdfObject(), is changed after the construction of the IViewedModelObject.

It is not guaranteed, that the MIObject is visible in the creation IModelView, after the model is
changed. It is also possible to create an IViewedModelObject of a MIObject and a IModelView,
where the MIObject is invisible.

The method getCreationModelView() returns the IModelView of the IViewedModelObject, which
was active when the model object was viewed IViewedModelObject.

6.2.1.7 Default Model View

Default model view when nothing is set is the IPostBuildInvariantValuesView.

6.2.2 Change Modes
6.2.2.1 Variant Specific Model Changes

The data model provides an execution context which guarantees that only the selected variant is
being modified. Objects which are visible in more than one variant are cloned automatically. The
clones and the object which is being modified (or their parents) automatically get a variation point
with the required post-build conditions.

The following picture shows how this execution context works:
See figure 6.7 on the following page.

• Before modifying the parameter, this instance is invariant. The same MDF instance is visible
in all variants

• When the client code changes the parameter value, the model automatically clones the pa-
rameter first

© 2025, Vector Informatik GmbH 336 of 387

Chapter 6. Data models in detail

Figure 6.7: Variant specific change of a parameter value

• Only the parameter instance which is visible in the currently active view is being modified.
The content of other variants stays untouched

Remark: This change mode is implicitly turned off when executing code in the IInvariantView
or in an unfiltered context.
try (final IModelViewExecutionContext viewContext = viewMgr . executeWithModelView (

variantView)) {
try (final IModelViewExecutionContext modeContext = viewMgr .

executeWithVariantSpecificModelChanges ()) {
ma. setAsString (parameter , "Vector - Informatik ");

}
}

Listing 6.8: Execute code with variant specific changes

6.2.2.2 Variant Common Model Changes

The data model provides an execution context which guarantees that model objects are modified
in all variants.

The behavior of this mode depends on the mode flag parameter as follows:

• mode == ALL : All parameters and containers are affected

• mode == DEFINITION_BASED : Only those parameters and containers are affected
which do not support variance (according to their definition in the BSWMD file and the
implementation configuration variant of their module configuration)

• mode == OFF : Doesn’t turn on this change mode (this value is used internally only)

Remark: This method doesn’t allow to reduce the scope of this change mode. So if ALL is already
set, this method doesn’t permit to use DEFINITION_BASED (or OFF) to reduce the effective
amount of objects. ALL will be still active then.

The following picture shows how this execution context works:
See figure 6.8 on the next page.

• We start with a variant model which contains one parameter in two instances - one per
variant - with the values 3 and 7

• When the client code sets the parameter value in variant 1 to 4, the model automatically
modifies the variant sibling in variant 2

• As a result, the parameter has the same value in all variants

This change mode works with parameters and containers. The following operations are sup-
ported:

© 2025, Vector Informatik GmbH 337 of 387

Chapter 6. Data models in detail

Figure 6.8: Variant common change of a parameter value

• Container/parameter creation: The created object afterwards exists in all variants the
related parent exists in. Already existing objects are not modified. Missing objects are
created

• Container/parameter deletion: The deleted object afterwards is being removed from all
variants the related parent exists in. So actually all variant siblings are deleted

• Parameter value change: The parameter exists and has the same value in all variants the
parent container exists in. If a parameter instance is missing in a variant, it is being created

Special behavior for multi-instance parameters:

• This mode guarantees that a set of multi-instance parameters is equal in all variants

• Only the values of multi-instance parameters are relevant. Their order can be different in
different variants

• Beside the values, this change mode guarantees that all variants contain the same number
of parameter instances. So, when a multi-instance set is being modified in a variant view,
this change mode creates or deletes objects in other variants to guarantee an equal number
of instances in all variant sibling sets

Remark: This change mode is implicitly turned on with the mode flag ALL when code is being
executed in the IInvariantView. It is being ignored implicitly when executing code in an unfiltered
context.

6.2.2.3 Default Change Mode

Default change modes when nothing is set are:

• EVariantSpecificMode.ON

• EVariantCommonMode.DEFINITION_BASED

6.3 BswmdModel details
6.3.1 BswmdModel - DefinitionModel
The BswmdModel provides a type safe and easy access to data of BSW modules (Ecu configuration
elements).

© 2025, Vector Informatik GmbH 338 of 387

Chapter 6. Data models in detail

Example:

• Access a single parameter /MICROSAR/ComM/ComMGeneral/ComMUseRte
You can to write: comM.getComMGeneral().getComMUseRte()

• Access containers[0:*] /MICROSAR/ComM/ComMChannel
You can to write:

for (ComMChannel channel : comM.getComMChannel()){
int value = channel.getComMChannelId().getValue();

}

The DaVinci Configurator Classic internal Model (MDF model) has 1:1 relationship to your
BswmdModel. The BswmdModel will retrieve all data from the underlying MDF model.

Figure 6.9: The relationship between the MDF model and the BswmdModel

DefinitionModel The DefinitionModel is the base implementation of every BswmdModel. Every
BswmdModel class is a subclass of the DefinitionModel where the classes begin with GI, like
GIContainer.

6.3.1.1 Types of DefinitionModels

There are two types of DefinitionModels:

1. BswmdModel (formally known as DefinitionTyped BswmdModel)

2. DefRef API (formally known as Untyped BswmdModel)

The BswmdModel consists of generated classes for the module definition elements like Mod-
uleDefinitions, Containers, Parameters in bswmd files. The generated class contains getter
methods for each child element. So you can access every child by the corresponding getter method
with compile time safety of the sub type.

The BswmdModel derives from the DefinitionModel DefRef API, so the BswmdModel
contains all functionalities of the DefRef API.

The DefRef API of the DefinitionModel provides a generic access to the Ecu configuration struc-
ture via DefRefs. There are NO generated classes for the Definition structure. The DefRef API
uses the base classes of the DefinitionModel to provide this DefRef based access. Every interface
in the DefinitionModel starts with an GI. The Ecu Configuration elements have corresponding base
interfaces for each element:

• ModuleConfiguration - GIModuleConfiguration

• Container - GIContainer

© 2025, Vector Informatik GmbH 339 of 387

Chapter 6. Data models in detail

• ChoiceContainer - GIChoiceContainer

• Parameter - GIParameter<?>

– Integer Parameter - GIParameter<BigInteger>

– Boolean Parameter - GIParameter<Boolean>

– Float Parameter - GIParameter<Double>

– String Parameter - GIParameter<String>

• Reference - GIReference<?>

– Container Reference - GIReferenceToContainer

– Foreign Reference- GIReference<Class>

So there are different classes for the different model types, e.g. all MDF classes start with MI,
the Untyped start with GI and DefinitionTyped classes are generated. The table 6.1 contrasts the
different model types and their corresponding classes.

AUTOSAR type MDFModel “Untyped” BswmdModel “DefinitionTyped”
ModuleConfiguration MIModuleConfiguration GIModuleConfiguration CanIf

(generated)
Container MIContainer GIContainer CanIfPrivateCfg

(generated)
String Parameter MITextualValue GIParameter<String> GString
Integer Parameter MINumericalValue GIParameter<BigInteger> GInteger
Reference to Container MIReferenceValue GIReferenceToContainer CanIfCtrlDrvInitHohConfigRef

(generated)
Enum Parameter MITextualValue GIParameter<String> CanIfDispatchBusOffUL

(generated)

Table 6.1: Different Class types in different models

Note: The GString in the table is not the Groovy GString class.
It is com.vector.cfg.gen.core.bswmdmodel.param.GString.

6.3.1.2 DefRef Getter methods of Untyped Model

The DefRef API classes have no getter methods for the specific child types, but the children can
be retrieved via the generic getter methods like:

• GIContainer.getSubContainers()

• GIContainer.getParameters()

• GIContainer.getParameters(TypedDefRef)

• GIContainer.getParameter(TypedDefRef)

• GIContainer.getReferencesToContainer(TypedDefRef)

• GIModuleConfiguration.getSubContainer(TypedDefRef)

• GIParameter.getValueMdf()

Additionally there are methods to retrieve other referenced elements, like parent of reference reverse
lookup:

• GIContainer.getParent()

• GIContainer.getParent(DefRef)

© 2025, Vector Informatik GmbH 340 of 387

Chapter 6. Data models in detail

• GIContainer.getReferencesPointingToMe()

• GIContainer.getReferencesPointingToMe(DefRef)

The following listings describe the usage of the untyped bswmd method in both models:
// Get the container from external method getCanIfInitConfigBswmd () ...
final GIContainer canIfInit = getCanIfInitConfigBswmd ();

// Gets all subcontainers from a container CanIfRxPduConfig from the canIfInit
instance

final List < GIContainer > subContainers = canIfInit . getSubContainers (
CanIfRxPduConfig . DEFREF . castToTypedDefRef ());

if (subContainers . isEmpty ()) {
// ERROR Handling

}
final GIContainer cont = subContainers .get (0);

// Gets exactly one CanIfCanRxPduHrhRef reference from the cont instance
final GIReference < MIContainer > child = cont. getReference (CanIfCanRxPduHrhRef .

DEFREF . castToTypedDefRef ());

Listing 6.9: Sample code to access element in an Untyped model with DefRefs

final GIReferenceToContainer ref = getCanIfCanRxPduHrhRefBswmd ();

final GIContainer target = ref. getRefTarget ();

Listing 6.10: Resolves a Reference target of a Reference Parameter

final GIParameter <BigInteger > param = getCanIfInitConfigBswmd (). getParameter (
CanIfInitConfiguration . CANIF_NUMBER_OF_CAN_TXPDU_IDS_DEFREF);

final BigInteger value = param. getValueMdf ();

Listing 6.11: The value of a GIParameter

Figure 6.10 on the next page shows the available DefRef navigation methods for the Untyped
model. There are more methods to navigate with the DefRef API through the DefinitionModel,
please look into the Javadoc documentation of the GI... classes for more functionality.

© 2025, Vector Informatik GmbH 341 of 387

Chapter 6. Data models in detail

Figure 6.10: SubContainer DefRef navigation methods

6.3.1.3 References

All references in the BswmdModel are subtypes of GIReference. The generated model contains
generated DefintionTyped classes for references to container, for the other references there are only
Untyped classes like GInstanceReference.

A GIReference has the method getRefTargetMdf(), this will always return the target in the
MDF model as MIReferrable. For non GIReferenceToContainer this is the normal way to
resolve references, but for references to a container you should always try to use the method
getRefTarget(), which will not leave the BswmdModel.

Note: Try to use getRefTarget() as much as possible.

References to container The following references are references to a container (References point-
ing to container) and are subtypes of the GIReferenceToContainer.

• Normal Reference

© 2025, Vector Informatik GmbH 342 of 387

Chapter 6. Data models in detail

• SymbolicNameReference

• ChoiceReference

References have the method getRefTarget(), which returns the target as BswmdModel object.
If the type of the target is known at model generation time, the return type will be the generated
type, otherwise the return type is GIContainer.

Note: It is always allowed to call getRefTarget(), also for references pointing to external
types.

There is the other method getPossibleRefTargets(), which returns all possible target container
as list. If the type of the targets is known at model generation time, the list type will be the
generated type, e.G. List<CanGeneral>. Otherwise the return type is List<GIContainer>.

Figure 6.11: Untyped reference interfaces in the BswmdModel

SymbolicNameReferences SymbolicNameReferences have the same methods as GIReference-
ToContainer and the additional methods getRefTargetParameterMdf(), which returns the target
parameter as MIObject The method getRefTargetParameter() return a BswmdModel object, if
the type is known at model generation time, the type will be the generated type. Otherwise the
return type is GIParameter.

Note: It is always allowed to call getRefTargetParameter(), also for references pointing to
external types.

6.3.1.4 Post-build selectable with BswmdModel

The BswmdModel supports the Post-build selectable use case, in respect that you do not have to
switch nor cache the corresponding IModelView. The BswmdModel objects cache the so called
Creation ModelView and switch transparently to that view when accessing the Model. So you
don’t have to switch to the correct view on access. See figure 6.12 on the following page. You
only have to ensure, that the requested IModelView is active or passed as parameter, when you

© 2025, Vector Informatik GmbH 343 of 387

Chapter 6. Data models in detail

create an instance at the GIModelFactory. Note: A lazy created object will inherit the view of
the existing element.

Figure 6.12: Creating a BswmdModel in the Post-build selectable use case

6.3.1.5 Creation ModelView of the BswmdModel

Every GIModelObject (BswmdModel object) has a creation IModelView. This is the IModelView,
which was active or passed during creation of the BswmdModel. At every method call to the
BswmdModel, the model will switch to this view.

Using the creation ModelView of the BswmdModel The method getCreationModelView()
returns the IModelView of this GIModelObject, which was active during the creation of this
BswmdModel.

The method executeWithCreationModelView() executes the code under visibility of the getCre-
ationModelView() of this GIModelObject.

The returned IModelViewExecutionContext must be used within a Java "try-with-resources"
block. It makes sure, that the old view is restored when the try is completed.

GIModelObject myModelObject = ...;

try (final IModelViewExecutionContext context = myModelObject .
executeWithCreationModelView ()) {

// do some operations
...

}

Listing 6.12: Java: Execute code with creation IModelView of BswmdModel object

The method executeWithCreationModelView(Runnable) executes the Runnable code under vis-
ibility of the getCreationModelView() of this GIModelObject.

© 2025, Vector Informatik GmbH 344 of 387

Chapter 6. Data models in detail

GIModelObject myModelObject = ...;

myModelObject . executeWithCreationModelView (() ->{
// do some operations

});

Listing 6.13: Java: Execute code with creation IModelView of BswmdModel object via runnable

The method executeWithCreationModelView() executes the Supplier code under visibility of
the getCreationModelView() of this GIModelObject. You could use this method, if you want to
return an object from this operation.

GIModelObject myModelObject = ...;

ReturnType returnVal = myModelObject . executeWithCreationModelView (() ->{
// do some operations
return theValue ;

});

Listing 6.14: Java: Execute code with creation IModelView of BswmdModel object

6.3.1.6 Lazy Instantiating

The BswmdModel is instantiated lazily; this means when you create a ModuleConfiguration object
only one object for the module configuration is created.

When you call a getXXX() method on the configuration it will create the requested sub element, if
it exists. So you can start at any point in the model (e.g. a Subcontainer) and the model is built
successively by your calls.

It is also allowed to call getParent() on a Subcontainer, if the parent was not created yet. The
technique could be used in validations, when the creation of the full BswmdModel is too expensive.
Then you can create only the needed container by an MDF model object.

6.3.1.7 Optional Elements

All elements (Container, Parameter . . .) are considered as optional if they have a multiplicity of
0:1. The BswmdModel provides a special handling of optional elements. This shall support you
to recognize optional elements during development (in most cases some kind of special handling
is needed). An optional Element has other access methods as a required Element: The method
getXXX() will not return the element, it will return a GIOptional<Element> object instead. You
can query the GIOptional object if the element exists (optElement.exists()). Then optEle-
ment.get() can be called to retrieve the real object.

You also have the choice to use the method existsXXX() to check for element existence. This
method is equivalent to getXXX().exists(). The difference is that you get a compile error, if
you try to use the optional element without any check. When you are sure that the element
must exist you can directly call getXXXUnsafe(). Note: If you use any of the get methods
(optElement.get() or getXXXUnsafe()) and the element does not exist the normal BswmdMod-
elException is thrown.

6.3.1.8 Class and Interface Structure of the BswmdModel

The upper part of the figure 6.13 on the next page shows the Untyped API (GI. . . interfaces). The
bottom left part is an example of DefinitionTyped (generated) class for the CanIf module. The

© 2025, Vector Informatik GmbH 345 of 387

Chapter 6. Data models in detail

bottom right part are the classes used by the DefinitionTyped model, but are not visible in the
Untyped model.

Figure 6.13: Class and Interface Structure of the BswmdModel

6.3.1.9 BswmdModel Write Access

The BswmdModel supports a write access for ECU configuration elements. This means new ele-
ments can be created and existing elements can be modified and deleted by the BswmdModel.

NOTE: The model is in read-only state by default, so no objects can be created. For this reason
all calls to an API which creates or deletes elements has to be executed within a transaction.

Optional and required Elements (0:1/1:1 Multiplicity) For optional or required elements, the
following additional methods are generated, if BswmdModelWriteAccess is enabled:

• get...OrNull(): Returns the requested element or null if it is missing.

• get...OrCreate(): Returns the existing requested element or implicitly creates a new one
if it is missing.

E.g. EcucGeneral:

© 2025, Vector Informatik GmbH 346 of 387

Chapter 6. Data models in detail

Ecuc ecuc = getEcucModuleConfig ();

// Gets the EcucGeneral container or null if it is missing .
EcucGeneral ecucGeneralOrNull = ecuc. getEcucGeneralOrNull ();

// Gets the existing EcucGeneral container or creates a new one if it is missing .
EcucGeneral ecucGeneralOrCreate = ecuc. getEcucGeneralOrCreate ();

Listing 6.15: Additional write API methods for EcucGeneral

Multiple elements (Upper Multiplicity > 1) For each multiple element, the return type for
these elements is changed from List<> to GIPList<> for parameter and GICList<> for container,
if BswmdModelWriteAccess is enabled. These new interfaces provide methods which allow creating
and adding new children for the corresponding elements:

• createAndAdd(): Creates a new child element, appends it to the list and returns the new
element.

• createAndAdd(int index): Creates a new child element, inserts it to the list at the specified
index position and returns the new element.

• For GICList<> only:

– createAndAdd(String shortName): Creates a new child element with the specified
shortName, appends it to the list and returns the new element.

– createAndAdd(String shortName, int index): Creates a new child element with the
specified shortName, inserts it to the list at the specified index position and returns the
new element.

– byName(String shortName): Gets the container by specified shortName or throws an
exception if it is missing.

– byNameOrNull(String shortName): Gets the container by specified shortName or null
if it is missing.

– byNameOrCreate(String shortName): Gets the container by specified shortName or
implicitly creates a new one if it is missing.

– exists(String shortname): Returns true if the container exists, otherwise false.

The following example creates EcucCoreDefinition via the Write API:

© 2025, Vector Informatik GmbH 347 of 387

Chapter 6. Data models in detail

Ecuc ecuc = getEcucModuleConfig ();

// Gets the EcucCoreDefinition list (create EcucHardware container if it is missing
)

GICList < EcucCoreDefinition > ecucCores = ecuc. getEcucHardwareOrCreate ().
getEcucCoreDefinition ();

// Adds two EcucCores
EcucCoreDefinition core0 = ecucCores . createAndAdd (" EcucCore0 ");
EcucCoreDefinition core1 = ecucCores . createAndAdd (" EcucCore1 ");

if(ecucCores . exists (" EcucCore0 ")){
// Sets EcucCoreId from EcucCore0 to 0
ecucCores . byName (" EcucCore0 "). getEcucCoreId (). setValue (0);

}

// Creates a new EcucCore by method byNameOrCreate
EcucCoreDefinition core2 = ecucCores . byNameOrCreate (" EcucCore2 ");

...

Listing 6.16: EcucCoreDefinition as GICList<EcucCoreDefinition>

Other write API

• Deleting model objects: It is also possible to delete objects from the model.

– moRemove: Deletes the specified object from the model.

– moIsRemoved: Returns true, if the object was removed from repository, or is invisible
in the current active IModelView.

// Deletes the container 'EcucGeneral ' from the model.
ecucGeneral . moRemove ();

// Deletes the parameter 'EcuCSafeBswChecks ' from the model.
ecucGeneral . getEcuCSafeBswChecks . moRemove ();

// Deletes the child container 'EcucCoreDefinition ' with shortname 'EcucCore0 ' from
the model.

ecucCores . byName (" EcucCore0 "). moRemove ();

// Checks if the container 'EcucGeneral ' was removed from repository , or is
invisible in the current active `IModelView `.

if(ecucGeneral . moIsRemoved ()){
...

}

Listing 6.17: Deleting model objects

• Duplication of containers: The method duplicate() copies a container with all its chil-
dren and appends it to the same parent.

// Duplicates the container 'EcucGeneral '
EcucGeneral duplicatedEcucGeneral = ecucGeneral . duplicate ();

// Duplicates the child container 'EcucCoreDefinition ' with shortname 'EcucCore0 '
var duplicatedEcucCore0 = ecucCores . byName (" EcucCore0 "). duplicate ();

Listing 6.18: Duplication of containers

© 2025, Vector Informatik GmbH 348 of 387

Chapter 6. Data models in detail

• Parameter values: The method setValue(VALUE) sets the value of a parameter. This
method checks if the specified parameters configuration object is available and sets the new
value. If the parameter object is missing it is implicitly created in the model.

// Sets the value of the parameter 'EcuCSafeBswChecks ' to 'true '
ecucGeneral . getEcuCSafeBswChecks . setValue (true);

Listing 6.19: Set parameter values with the BswmdModel Write API

• Reference targets: The method setRefTarget(REF_TARGET) sets the target of a reference.
This method sets the specified target object as reference target of the specified reference
parameter. If the reference parameter object is missing it is implicitly created in the model.

// Gets the container 'OsCounter ' with shortname 'SystemTimer '
OsCounter osCounterTarget = os. getOsCounters . byName (" SystemTimer ");

// Sets the reference target of the parameter 'CanCounterRef '
can. getCanGeneral (). getCanCounterRef (). setRefTarget (osCounterTarget);

Listing 6.20: Set reference targets with the BswmdModel Write API

© 2025, Vector Informatik GmbH 349 of 387

Chapter 6. Data models in detail

6.3.1.10 BswmdModel Declaration API

The BswmdModel supports declaration API to declare an AUTOSAR ECU configuration structure
in code, which is then synchronized with the existing structure to create elements in a declarative
way.

Note: The model is in read-only state by default, so no objects can be created or synchronized.
You must have an open transaction running, when using the Declaration API, because it will
change the model.

Entrypoint into Declaration You can enter the Declaration API on every module configuration
or container with the method declare{}. Inside the declare{} block you use the Declaration
API.
can. declare {

// Inside here you can use the Declaration API
}

Listing 6.21: Start declaration API on a Module

Usage of the Declaration API on an existing container:

CanGeneral canGeneral = can. canGeneral
canGeneral . declare { CanGeneralDeclaration decl ->

// Inside here you can use the Declaration API
}

Listing 6.22: Start declaration API on any existing container

API Structure Every module or container class has a corresponding <ElementName>Declaration
class, which is used to declare the structure of the module or container tree.

Every <Name>Declaration class defines the methods to declare its direct child containers and child
parameters:

• <ContainerName>(Action) method: For 0:1 or 1:1 child containers

• <ContainerName>(String shortname, Action) method: For 0:* child containers

• <ParameterName>(value) method: For 0:1 or 1:1 child parameters

• <ParameterName>(values...) method: For 0:* child parameters

• <ReferenceName>(referenceTarget) method: For 0:1 or 1:1 child references

• <ReferenceName>(referenceTargets...) method: For 0:* child references

The declaration methods will return the created or existing BswmdModel element (GIxxx), which
was used by the called declaration. So the CanGeneral{} method returns the CanGeneral con-
tainer. This can be useful, if you need the element as a reference target for a reference pointing to
that container.

Semantics The Declaration API does not clean the underlying AUTOSAR model, it tries to
synchronize the existing model with your declared structure. If you want to declare a new structure,
you have to delete (with moRemove()) the model element before declaring elements.

© 2025, Vector Informatik GmbH 350 of 387

Chapter 6. Data models in detail

So a call to the CanGeneral{} in the Can module with multiplicity 1:1 will use the existing
container. If no container exists, a new container will be created with the name CanGeneral.

can. declare {
CanGeneral {

// Declares the CanGeneral container
}

}

Listing 6.23: Container declaration with 0:1 or 1:1 multiplicity

For the 0:* multiplicity, the Declaration API tries to find the container with the given shortname,
otherwise it will create the container with the shortname. That is the reason why 0:* containers
need a shortname in the API.
can. declare {

CanConfigSet (" Config1 ") {
// Declares " Config1 " CanConfigSet container

}
CanConfigSet (" Config2 ") {

// Declares " Config2 " CanConfigSet container
}

}

Listing 6.24: Container declaration with upper multiplicity > 1

All 0:1 and 1:1 parameters and references are automatically created, when their values are set.
And also existing parameters are synchronized with the new values.

can. declare {
CanGeneral {

// Declares 0:1 or 1:1 parameters
CanDevErrorDetection (true)
CanInterruptLock (ECanInterruptLock .APPL)
CanGenericConfirmation (false)

}
}

Listing 6.25: Parameter declaration with 0:1 or 1:1 multiplicity

For 0:* parameters and references, the Declaration API will synchronize the existing parameters
with the new values by index. If there is no parameter for that index, a new parameter will be
created. But existing ones are not deleted. The 0:* parameters have a vararg parameter, where
the index in the vararg array is the index of the resulting parameter.

can. canGeneral . declare {
CanMainFunctionRWPeriods {

// Declares 3 parameters of type CanMainFunctionReadPeriod
CanMainFunctionReadPeriod (10, 30, 50)

}
}

Listing 6.26: Parameter declaration with upper multiplicity > 1

Interop with BswmdModel and MDF Model The Declaration API provides interop methods
to switch into the normal BswmdModel or the MDF model for each element. You can use the
methods getBswmdModelObject() or getMdfObject() to switch to them.

© 2025, Vector Informatik GmbH 351 of 387

Chapter 6. Data models in detail

can. declare {
CanGeneral {

// Switch into the normal BswmdModel API
CanGeneral theBswmdObject = bswmdModelObject
def theObjectLink = bswmdModelObject . objectLink
// Switch into the MDF model
MIContainer theMdfObj = mdfObject

}
}

Listing 6.27: Declaration API interop

You can also interleave other model operation code with the Declaration API code. The Declaration
API will synchronize the model directly at the method call and the BswmdModel will reflect the
change immediately.

The method setShortname() can be used to rename an object.

can. declare {
CanGeneral {

// Get the current shortName
String theShortName = shortname
// Set shortName of the container
shortname = theShortName + "New"

}
}

Listing 6.28: Container shortname API

The Declaration API uses the underlying BswmdModel Write Access to synchronize the model, so
the same post-build selectable write semantics apply.

© 2025, Vector Informatik GmbH 352 of 387

Chapter 6. Data models in detail

Usage Sample The following sample declares a structure on the Can module with the Declaration
API.
can. declare {

CanGeneral {
CanDevErrorDetection (true)
CanGetStatus (false)
CanIdenticalIdCancellation (false)
CanInterruptLock (ECanInterruptLock .APPL)
CanIndex (5)
CanGenericPreTransmit (false)

}

CanConfigSet (" CanConfigSet ") {
CanController (" Controller1 ") {

CanControllerId (1)
CanBusName (" CanBus1 ")

def baud1 = CanControllerBaudrateConfig ("Baud1") {
CanSamplingMode (ECanSamplingMode . OneSample)

}
// Second Baudrate config
CanControllerBaudrateConfig ("Baud2") {

CanSamplingMode (ECanSamplingMode . ThreeSamples)
}

CanControllerDefaultBaudrate (baud1) // Assign a refTarget to reference
}

CanController (" Controller2 ") {
CanControllerId (2)

}
}

}

Listing 6.29: Example BswmdModel Declaration API on a Can module

© 2025, Vector Informatik GmbH 353 of 387

Chapter 6. Data models in detail

6.3.2 BswmdModel generation
The BswmdModel for the automation interface is generated automatically by the DaVinci Config-
urator.

6.3.2.1 DerivativeMapping

If the BSW Package contains one or more modules with a DerivativeMapping, the BswmdModel
classes for these modules can only be generated for one certain derivative. By default, the first
derivative is selected, sorted by UUID.

If a other derivative shall be selected for BswmdModel generation a Settings.xml file can be
defined in the BSW Package at <SIP-ROOT-PATH>/DaVinciConfigurator/Generators.

Sample file:

<Settings >
<Settings Name="com. vector .cfg. bswmdmgen . BswmdAutomationModelSettings ">

<!--Selects the derivative with the name or UUID specified by Value
-->

<Setting Name=" SelectedDerivative " Value=" SPX546B "/>
</ Settings >

</ Settings >

Listing 6.30: Settings.xml sample for DerivativeMapping

6.4 Model Utility Classes
6.4.1 AutosarUtil
The class AutosarUtil is a static utility class. Its methods are not directly related to the MDF
model but are useful when client code deals with AUTOSAR paths and shortnames on string basis.
Some of these methods are

• isValidShortname(String): Checks if this shortname is valid according the rules, the AU-
TOSAR standard defines (character set for example)

• getLastShortname(String): Returns the last shortname of the specified AUTOSAR path

• getFirstShortname(String): Returns the first shortname of the specified AUTOSAR path

• getAllShortnames(String): Returns all shortnames of the specified AUTOSAR path

6.4.2 AsrPath
The AsrPath class represents an AUTOSAR path without a connection to any model.

AsrPaths are constant; their values cannot be changed after they are created. This class is im-
mutable!

© 2025, Vector Informatik GmbH 354 of 387

Chapter 6. Data models in detail

// String based APIs
final AsrPath genericPath = AsrPath . create ("/a/b");
final AsrPath relativeChildPathWithParent = AsrPath . create (genericPath , "e");
final AsrPath absoluteChildPathWithParent = AsrPath . create (genericPath , "/a/b/e");

// Error tolerant APIs
final String pathMayBeInvalid = "??/ invalid /??";
final AsrPath mayBeInvalidPath = AsrPath . tryCreate (pathMayBeInvalid);
if (mayBeInvalidPath != null) {

// work on valid path
}

// retrieve the model element : connect to loaded model via project context
final MIReferrable referrableAutosarObject = genericPath . getAutosarObject (

getProjectContext ());
if (referrableAutosarObject != null) {

// work with autosar object
}

Listing 6.31: AsrPath methods

6.4.3 TypedAsrPath
Typed version of an AsrPath to represent an AUTOSAR path and its expected metamodel
class.
// String based APIs
final TypedAsrPath < MIContainer > containerAsrPath = AsrPath . create ("/ ActiveEcuC /

PduR/ PduRRoutingTables / PduRRoutingPathGroup ", MIContainer .class);
final TypedAsrPath < MIModuleConfiguration > moduleAsrPath = AsrPath . create ("/

ActiveEcuC /PduR", MIModuleConfiguration . class);
final TypedAsrPath < MIContainer > pduRRoutingTables = AsrPath . create (moduleAsrPath ,

" PduRRoutingTables ", MIContainer . class);

// Error tolerant APIs
final String pathMayBeInvalid = "??/ invalid /??";
final TypedAsrPath < MIContainer > mayBeInvalidPath = AsrPath . tryCreate (

pathMayBeInvalid , MIContainer . class);
if (mayBeInvalidPath != null) {

// work on valid path
}

// check model elements : connect to loaded model via project context
final MIReferrable referrable = getReferrable ();
if (containerAsrPath . isPathOf (referrable)) {

// referrable has correct path and type
final MIContainer container = (MIContainer) referrable ;

}

Listing 6.32: TypedAsrPath methods

6.4.4 AsrObjectLink
This class implements an immutable identifier for AUTOSAR objects.

An AsrObjectLink can be created for each object in the MDF AUTOSAR model tree. The main
use case of object links is to identify an object unambiguously at a specific point in time for
logging reasons. Additionally and under specific conditions it is also possible to find the related

© 2025, Vector Informatik GmbH 355 of 387

Chapter 6. Data models in detail

MDF object using its AsrObjectLink instance. But this search-by-link cannot be guaranteed after
model changes (details and restrictions below).

6.4.4.1 Restrictions of object links

• They are immutable and will therefore become invalid when the model changes

• So they don’t guarantee that the related MDF object can be retrieved after the model has
been changed. Search-by-link may even find another object or throw an exception in this
case

6.4.5 DefRefs
The DefRef class represents an AUTOSAR definition reference (e.g. /MICROSAR/CanIf) without
a connection to any model. A DefRef replaces the String which represents a definition refer-
ence. You shall always use a DefRef instance, when you want to reference something by it’s
definition.

The class abstracts the behavior of definition references in the AUTOSAR model (e.g. AUTOSAR
3 and AUTOSAR 4 handling).

DefRefs are constant; their values can not be changed after they are created. All DefRef classes
are immutable.

A DefRef represents the definition reference as two parts:

• Package part - e.g. /MICROSAR

• Definition without the package part - e.g. CanIf/CanIfGeneral

This is used to navigate through the AUTOSAR model with refinements and wildcards. So you
have to create a DefRef with the two parts separated.

The figure 6.14 shows the structure of the DefRef class and its sub classes.

Figure 6.14: DefRef class structure

© 2025, Vector Informatik GmbH 356 of 387

Chapter 6. Data models in detail

Creation You can create a DefRef object with following public static methods (partial):

• DefRef.create(DefRef, String) - Parent DefRef, Child name

• DefRef.create(IDefRefWildcard, String) - Wildcard, Definition without package

• DefRef.create(MIHasDefinition) - Model object

• DefRef.create(MIHasDefinition, String) - Parent object, Child name

• DefRef.create(MIParamConfMultiplicity) - Definition object

• DefRef.create(String, String) - Package part, Definition without package

Wildcards DefRef instances can also have a wildcard instead of a package String (IDefRefWildcard).
The wildcard is used to match on multiple packages. See chapter 6.4.5.2 on the next page for de-
tails.

Useful Methods This section describes some useful methods (Please look at the javadoc of the
DefRef class for a full documentation):

• defRef.isDefinitionOf(MIHasDefinition) - Checks the definition of the configuration
element and returns true if the element has the definition. The "defRef" object is e.g. from
the Constants class.

– Note: The method isDefinitionOf() returns false, if the element is removed or
invisible.

• defRef.asDefinitionOf(MIHasDefinition, Class) - Checks the definition of the config-
uration element and returns the element casted to the configuration subtype, or null.

– Note: The method asDefinitionOf() returns null, if the element is removed or invis-
ible.

MIObject yourObject = ...;
DefRef yourDefRef = ...;

if(yourDefRef . isDefinitionOf (yourObject){
//It is the correct instance
//Do something

}

//Or with an integrated cast in the TypedDefRef case
final MIContainer container = yourDefRef . asDefinitionOf (yourObject);
if(container != null){

//Do something
}

Listing 6.33: DefRef isDefinitionOf methods

6.4.5.1 TypedDefRefs

The TypedDefRef class represents an AUTOSAR definition reference with the type of the AU-
TOSAR (MDF) model. So every TypedDefRef knows which Definition, Configuration and Value
element is correct for the Definition path.

The DEF_TYPE, CONFIG_TYPE and VALUE_TYPE are Java generics and are used many APIs to return
the specific type of a request.

© 2025, Vector Informatik GmbH 357 of 387

Chapter 6. Data models in detail

In addition the most TypedDefRefs also provide additional TypeInfo data, like the Multiplicity of
the element. See TypeInfo javadoc for more details.

6.4.5.2 DefRef Wildcards

The DefRef class supports so called wildcards, which could be used to match on multiple packages
at once, like the /[MICROSAR] wildcard matches on any DefRef package starting with /MICROSAR.
E.g. /MICROSAR, /MICROSAR/S12x,

Every wildcard is of type IDefRefWildcard. An IDefRefWildcard instance could be passed
to the DefRef.create(IDefRefWildcard, String) method to create a DefRef with wildcard
information.

Predefined DefRef Wildcards The class EDefRefWildcard contains the predefined IDefRe-
fWildcards for the DefRef class. These IDefRefWildcards could be used to create DefRefs,
without creating your own wildcard for the standard use cases

The DefRef.create(String, String) method will parse the first String to find a wildcard
matching the EDefRefWildcards.

Predefined wildcards: The class EDefRefWildcard defines the following wildcards, with the spec-
ified semantic:

• EDefRefWildcard.ANY /[ANY]: Matches on any package path. It is equal to any package
and any packages refines from ANY wildcard.

• EDefRefWildcard.AUTOSAR /[AUTOSAR]: Matches on the AUTOSAR3 and AUTOSAR4 pack-
ages (see DefRef class). It is equal to the AUTOSAR packages, but not to refined packages
e.g. /MICROSAR. Any packages which refined from AUTOSAR also refines from AUTOSAR
wildcard.

• EDefRefWildcard.NOT_AUTOSAR_STMD /[!AUTOSAR_STMD]: Matches on any package except
the AUTOSAR packages. It is equal to any package, except AUTOSAR packages. Any
package refines from NOT_AUTOSAR_STMD wildcard, except AUTOSAR packages.

• EDefRefWildcard.MICROSAR /[MICROSAR]: Matches on any package stating with /MICROSAR
(also /MICROSAR/S12x). It is equal to any package stating with /MICROSAR. Any pack-
age starting with /MICROSAR refines from MICROSAR wildcard.

• EDefRefWildcard.NOT_MICROSAR /[!MICROSAR]: Matches on any package path not starting
with /MICROSAR. It is equal to any package not starting with /MICROSAR. Any package,
which does not start with /MICROSAR, refines from NOT_MICROSAR wildcard. Also the
AUTOSAR packages refine from NOT_MICROSAR wildcard.

Creation of the DefRef with Wildcard The elements of EDefRefWildcard could be passed to
the DefRef constructor:

DefRef myDefRef = DefRef . create (EDefRefWildcard .MICROSAR , "CanIf");

Listing 6.34: Creation of DefRef with wildcard from EDefRefWildcard

© 2025, Vector Informatik GmbH 358 of 387

Chapter 6. Data models in detail

Custom DefRef Wildcards You could create your own wildcard by implementing the interface
IDefRefWildcard. Please choose a good name for your wildcard, because this could be displayed
to the user, e.g. in Validation results. The matches(DefRef) method shall return true, if the
passed DefRef matches the wildcard constraints.

Every wildcard string shall have the notation /[NameOfWildcard].
E.g. /[MICROSAR], /[!MICROSAR].

6.4.6 CeState
The CeState is an object which allows to retrieve different states of a configuration entity.

The most important APIs for generator and script code are:

• IParameterStatePublished

• IContainerStatePublished

6.4.6.1 Getting a CeState object

The BSWMD models implement methods to get the CeState for a specific CE as the following
listing shows (the types GIParameter and GIContainer are interface base types in the BSWMD
models):

GIParameter parameter = ...;
IParameterStatePublished parameterState = parameter . getCeState ();

GIContainer container = ...;
IContainerStatePublished containerState = container . getCeState ();

Listing 6.35: Getting CeState objects using the BSWMD model

6.4.6.2 IParameterStatePublished

The IParameterStatePublished specifies a type-safe published API for parameter states. It
mainly covers the following state information

• Does this parameter have a pre-configuration value? What is this value? The same informa-
tion is being provided for recommended and initial (derived) values

• Is this parameter user-defined?

• Is value change or deletion allowed in the current configuration phase (post-build loadable
use case)?

• What is the configuration class of this parameter

The figure 6.15 on the following page shows the inheritance hierarchy of the IParameterStatePub-
lished class and its sub classes.

Parameters have different types of state information:

• Simple state retrieval
Example: The method isUserDefined() returns true when the parameter has a user-defined
flag.

• States and values (pre-configuration, recommended configuration and inital (derived) val-
ues)

© 2025, Vector Informatik GmbH 359 of 387

Chapter 6. Data models in detail

Figure 6.15: IParameterStatePublished class structure

Example: The method hasPreConfigurationValue() returns true when the parameter has
a pre-configured value. getPreConfigurationValue() returns this value.

• States and reasons
Example: The method isDeletionAllowedAccordingToCurrentConfigurationPhase() re-
turns true if the parameter can be deleted in the current configuration phase (post-build load-
able projects only). getNotDeletionAllowedAccordingToCurrentConfigurationPhaseRea-
sons() returns the reasons if deletion is not allowed.

6.4.6.3 IContainerStatePublished

The IContainerStatePublished specifies a type-safe published API for container states. It mainly
covers the following state information

• Does this container have a pre-configuration container (includes access to this container)?
The same information is being provided for recommended and initial (derived) values

• Is change or deletion allowed in the current configuration phase (post-build loadable use
case)?

• In which configuration phase has this container been created in (post-build loadable use
case)?

• What is the configuration class of this container

The figure 6.16 on the next page shows the inheritance hierarchy of the IContainerStatePub-
lished class and its sub classes.

This API provides state information similar to IParameterStatePublished. Some of the states
are container-specific, of course. getCreationPhase(), for example, which returns the phase a
container in a post-build loadable configuration has been created in.

6.5 Model Services
6.5.1 EcucDefinitionAccess
The IEcucDefinitionAccess provides convenient and typesafe access to definition objects (mod-
ule, container, parameter and reference definitions). The contained def() methods take MDF

© 2025, Vector Informatik GmbH 360 of 387

Chapter 6. Data models in detail

Figure 6.16: IContainerStatePublished class structure

definition objects and return wrappers which can be used to retrieve specific characteristics of
definitions.

Example:

IEcucDefinitionAccess eda;
MIIntegerParamDef intParamDef ;

// Get the integer definition wrapper
IEcucIntegerDefinition def = eda.def(intParamDef);

// Get the (optional) default value
Optional <BigInteger > defaultOpt = def. getDefault ();
boolean hasDefault = defaultOpt . isPresent ();

BigInteger defaultValue = defaultOpt .get ();

// Get the multiplicity
IEcucDefMultiplicity multiplicity = def. getMultiplicity ();
BigInteger lower = multiplicity . getLower ();
BigInteger upper = multiplicity . getUpper ();

Listing 6.36: Integer parameter definition access examples

6.5.1.1 Post-build loadable

EcucModuleDefinition IEcucModuleDefinition is the interface of the module definition wrap-
per. It provides the following method(s):

getSupportedConfigurationVariants()
The getSupportedConfigurationVariants() method returns a collection of supported configu-
ration variants. Never returns null but an empty collection if no supported config variants are
specified.

The returned collection never contains the following literals:

• EEcucConfigurationVariant.PRECONFIGURED_CONFIGURATION

© 2025, Vector Informatik GmbH 361 of 387

Chapter 6. Data models in detail

• EEcucConfigurationVariant.RECOMMENDED_CONFIGURATION

This method is for post-build loadable only!

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the module definitions used
the following valid values:

• VARIANT-PRE-COMPILE

• VARIANT-LINK-TIME

• VARIANT-POST-BUILD-LOADABLE

• VARIANT-POST-BUILD-SELECTABLE

VARIANT-POST-BUILD was invalid! With AUTOSAR 4.2.1 and later, the following values are valid
(because the loadable and selectable specifications have been separated):

• VARIANT-PRE-COMPILE

• VARIANT-LINK-TIME

• VARIANT-POST-BUILD

VARIANT-POST-BUILD-LOADABLE and VARIANT-POST-BUILD-SELECTABLE are invalid!

This method takes the AUTOSAR version into account and returns the post-build loadable relevant
specification only.

EcucContainerDefinition IEcucContainerDefinition is the interface of the container definition
wrapper. It provides the following method(s):

getMultiplicityConfigurationClass()
The getMultiplicityConfigurationClass(EEcucConfigurationVariant) method returns the
multiplicity configuration class for the specified module implementation variant. The returned
value defines in which configuration phase the number of container instances latest may change if
the module implements the specified variant.

Supported values for the variant are

• EEcucConfigurationVariant.VARIANT_PRE_COMPILE

• EEcucConfigurationVariant.VARIANT_LINK_TIME

• EEcucConfigurationVariant.VARIANT_POST_BUILD_LOADABLE

Other values lead to an IllegalArgumentException.

This method doesn’t take the multiplicity into account. It only investigates the multiplicity config-
uration class as specified in the related container definition. So it still may return EEcucConfigu-
rationClass.POST_BUILD even if the multiplicity is 1:1 for example. The post-build loadable use
case differs here from post-build selectable (see supportsVariantMultiplicity()) because the
changeability in the post-build phase is being inherited from parent objects. So, if you want to
find out if a container actually permits changes in the post-build phase, you should use IContain-
erStatePublished.

This method is for post-build loadable only!

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the container definitions con-
tained the postBuildChangeable flag to define post-build loadable support. This method inter-

© 2025, Vector Informatik GmbH 362 of 387

Chapter 6. Data models in detail

nally investigates the postBuildChangeable flag in this case but the multiplicityConfigClass
table for AUROSAR 4.2.1 and newer versions.

EcucCommonAttributes IEcucCommonAttributes is the base interface of all parameter and ref-
erence definition wrappers. It provides the following method(s):

getMultiplicityConfigurationClass()
The getMultiplicityConfigurationClass(EEcucConfigurationVariant) method returns the
multiplicity configuration class for the specified module implementation variant. The returned
value defines in which configuration phase the number of parameter instances latest may change
if the module implements the specified variant.

Supported values for the variant are

• EEcucConfigurationVariant.VARIANT_PRE_COMPILE

• EEcucConfigurationVariant.VARIANT_LINK_TIME

• EEcucConfigurationVariant.VARIANT_POST_BUILD_LOADABLE

Other values lead to an IllegalArgumentException.

This method doesn’t take the multiplicity into account. It only investigates the multiplicity config-
uration class as specified in the related parameter definition. So it still may return EEcucConfig-
urationClass.POST_BUILD even if the multiplicity is 1:1 for example. The post-build loadable
use case differs here from post-build selectable (see supportsVariantMultiplicity()) because
the changeability in the post-build phase is being inherited from parent objects. So, if you want
to find out if a parameter actually permits changes in the post-build phase, you should use IPa-
rameterStatePublished.

This method is for post-build loadable only!

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the parameter definitions con-
tain the implementationConfigClass table to define post-build loadable support. This method
internally investigates the implementationConfigClass in this case but the multiplicityCon-
figClass table for AUROSAR 4.2.1 and newer versions.

getValueConfigurationClass()
The getValueConfigurationClass(EEcucConfigurationVariant) method returns the value con-
figuration class for the specified module implementation variant. The returned value defines in
which configuration phase the value of parameter instances latest may change if the module im-
plements the specified variant.

Supported values for the variant are

• EEcucConfigurationVariant.VARIANT_PRE_COMPILE

• EEcucConfigurationVariant.VARIANT_LINK_TIME

• EEcucConfigurationVariant.VARIANT_POST_BUILD_LOADABLE

Other values lead to an IllegalArgumentException.

This method never returns EEcucConfigurationClass.LINK.

This method is for post-build loadable only!

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the parameter definitions con-
tain the implementationConfigClass table to define post-build loadable support. This method

© 2025, Vector Informatik GmbH 363 of 387

Chapter 6. Data models in detail

internally investigates the implementationConfigClass in this case but the valueConfigClass
table for AUROSAR 4.2.1 and newer versions.

6.5.1.2 Post-build selectable

EcucModuleDefinition IEcucModuleDefinition is the interface of the module definition wrap-
per. It provides the following method(s):

supportsPostBuildVariance()
The supportsPostBuildVariance() method returns true if this module configuration supports
post-build selectable.

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the module definitions sup-
portedSupportedConfigurationVariants defined both, post-build loadable and selectable sup-
port. With AUTOSAR 4.2.1 the supportedSupportedConfigurationVariants specifies post-
build loadable only and this method returns the value of the new postBuildVariantSupport
flag.

EcucCommonAttributes IEcucContainerDefinition is the interface of the container definition
wrapper. It provides the following method(s):

supportsVariantMultiplicity()
The supportsVariantMultiplicity() method returns true if this container type supports vari-
ant multiplicity. If true is returned this means that different variants may contain different number
of instances of this container type.

This method takes the multiplicity into account. So, if the container definition specifies the mul-
tiplicity with lower == upper, it always returns false. Concerning post-build selectable it never
makes sense to permit variance if lower and upper multiplicity are equal.

This method is for post-build selectable only!

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the container definitions con-
tained the postBuildChangeable flag to define post-build loadable support. This method inter-
nally investigates the postBuildChangeable flag in this case but the postBuildVariantMulti-
plicity flag for AUROSAR 4.2.1 and newer versions.

supportsVariantShortname()
The supportsVariantShortname() method returns true if one of the following conditions ap-
ply.

• supportsVariantMultiplicity() returns true

• The ADMIN-DATA flag postBuildSelectableChangeable is true

The use case for this specification are 1:1 containers. When this method returns true, 1:1 contain-
ers may have different shortnames in different variants. This is a Vector specific semantic which
is not provided by AUTOSAR.

EcucCommonAttributes IEcucCommonAttributes is the base interface of all parameter and ref-
erence definition wrappers. It provides the following method(s):

supportsVariantMultiplicity()
The supportsVariantMultiplicity() method returns true if this parameter type supports vari-
ant multiplicity. If true is returned this means that different variants may contain different number
of instances of this parameter type.

© 2025, Vector Informatik GmbH 364 of 387

Chapter 6. Data models in detail

This method takes the multiplicity into account. So, if the parameter definition specifies the
multiplicity with lower == upper, it always returns false. Concerning post-build selectable it
never makes sense to permit variance if lower and upper multiplicity are equal.

This method is for post-build selectable only!

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the parameter definitions con-
tain the implementationConfigClass table to define post-build selectable support. This method
internally investigates the implementationConfigClass in this case but the postBuildVariant-
Multiplicity flag for AUROSAR 4.2.1 and newer versions.

supportsVariantValue()
The supportsVariantValue() method returns true if this parameter type supports a variant
value. If true is returned this means that different variants may contain different values in instances
of this parameter type.

This method is for post-build selectable only!

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the parameter definitions con-
tain the implementationConfigClass table to define post-build selectable support. This method
internally investigates the implementationConfigClass in this case but the postBuildVariant-
Value flag for AUROSAR 4.2.1 and newer versions.

6.5.2 EcuConfigurationAccess
The IEcuConfigurationAccess provides convenient and typesafe access to configuration objects
(modules, containers, parameters and references). The contained cfg() methods take MDF (ECU
configuration) objects and return wrappers which can be used to retrieve specific characteristics
of the configuration content.

Example:

IEcuConfigurationAccess eca;
MINumericalValue intParam ;

// Get the parameter wrapper
IEcucNumericalParameter numCfg = eca.cfg(intParam);

// Check if this is an integer parameter
if (numCfg instanceof IEcucIntegerParameter) {

IEcucIntegerParameter intCfg = (IEcucIntegerParameter) numCfg ;

// Get the parameter value
boolean hasValue = intCfg . hasValue ();
BigInteger value = intCfg . getValue ();

// Get the related definition wrapper
IEcucIntegerDefinition def = intCfg . getEcucDefinition ();

}

Listing 6.37: Integer parameter configuration access examples

6.5.2.1 Post-build loadable

EcucModuleConfiguration IEcucModuleConfiguration is the base interface of all module con-
figuration wrappers. It provides the following method(s):

© 2025, Vector Informatik GmbH 365 of 387

Chapter 6. Data models in detail

getConfigurationVariant()
The getConfigurationVariant() method returns the modules configuration variant.

This method never returns null. If the module has no value specified, this method returns a
default value as follows:

• EEcucConfigurationVariant.VARIANT_PRE_COMPILE, if it is contained in the supported
config variants of the related module definition

• otherwise EEcucConfigurationVariant.VARIANT_LINK_TIME, if it is contained in the sup-
ported config variants of the related module definition

• otherwise EEcucConfigurationVariant.VARIANT_POST_BUILD_LOADABLE, if it is contained
in the supported config variants of the related module definition

• otherwise EEcucConfigurationVariant.VARIANT_PRE_COMPILE, even if not contained in the
supported config variants of the related module definition or if the definition is not available

Remark about AUTOSAR versions: Prior to AUTOSAR 4.2.1 the module configurations
implementation config variant defined if this module implements post-build loadable and/or se-
lectable. With AUTOSAR 4.2.1 the implementation config variant defines only if the module
implements post-build loadable. The post-build selectable aspect has been separated from this def-
inition. This method handles the loadable semantic, independent of the AUTOSAR version.

This is for post-build loadable only!

setConfigurationVariant()
The setConfigurationVariant(EEcucConfigurationVariant) method sets the specified imple-
mentation configuration variant.

This is for post-build loadable only!

Supported values are

• EEcucConfigurationVariant.VARIANT_PRE_COMPILE

• EEcucConfigurationVariant.VARIANT_LINK_TIME

• EEcucConfigurationVariant.VARIANT_POST_BUILD_LOADABLE

Remarks concerning AUTOSAR versions:

• If the modules definition has schema version 4.2.1 or higher, the specified value is being
written directly to the model

• If the modules definition has a schema version lower than 4.2.1, the modules implementation
configuration variant in the MDF model encodes both, post-build loadable and post-build
selectable. The following behavior is being implemented in this case:

© 2025, Vector Informatik GmbH 366 of 387

Chapter 6. Data models in detail

Current model value Parameter Result in the model
PRE_COMPILE PRE_COMPILE PRE_COMPILE

LINK_TIME LINK_TIME
POST_BUILD_LOADABLE POST_BUILD_LOADABLE

LINK_TIME PRE_COMPILE PRE_COMPILE
LINK_TIME LINK_TIME
POST_BUILD_LOADABLE POST_BUILD_LOADABLE

POST_BUILD_LOADABLE PRE_COMPILE PRE_COMPILE
LINK_TIME LINK_TIME
POST_BUILD_LOADABLE POST_BUILD_LOADABLE

POST_BUILD_SELECTABLE PRE_COMPILE POST_BUILD_SELECTABLE
LINK_TIME POST_BUILD_SELECTABLE
POST_BUILD_LOADABLE POST_BUILD

POST_BUILD PRE_COMPILE POST_BUILD_SELECTABLE
LINK_TIME POST_BUILD_SELECTABLE
POST_BUILD_LOADABLE POST_BUILD

EcucContainer IEcucContainer is the base interface of all container wrappers. It provides the
following method(s):

getEffectiveMultiplicityConfigurationClass()
The getEffectiveMultiplicityConfigurationClass() method walks up the model tree to find
the related module configuration. Then it uses the module implementation configuration variant
to return the selected configuration class as specified in the container definition.

This method never returns null. In case the detection of the configuration class fails (e.g. if
the related module configuration cannot be detected), this method returns EEcucConfigura-
tionClass.PRE_COMPILE by default. It also never returns EEcucConfigurationClass.LINK.

This method is for post-build loadable only!

getEffectiveMultiplicityConfigurationClassDefRef()
The getEffectiveMultiplicityConfigurationClass(DefRef) method walks up the model tree
to find the related module configuration. Then it uses the module implementation configuration
variant to return the selected configuration class of the specified parameter definition.

This method never returns null. In case the detection of the configuration class fails (e.g. if
the related module configuration cannot be detected), this method returns EEcucConfigura-
tionClass.PRE_COMPILE by default. It also never returns EEcucConfigurationClass.LINK.

This method is for post-build loadable only!

getEffectiveValueConfigurationClass()
The getEffectiveValueConfigurationClass(DefRef) method walks up the model tree to find
the related module configuration. Then it uses the module implementation configuration variant
to return the selected configuration class of the specified parameter definition.

This method never returns null. In case the detection of the configuration class fails (e.g. if
the related module configuration cannot be detected), this method returns EEcucConfigura-
tionClass.PRE_COMPILE by default. It also never returns EEcucConfigurationClass.LINK.

This method is for post-build loadable only!

EcucParameter IEcucParameter is the base interface of all parameter and reference wrappers.
It provides the following method(s):

getEffectiveMultiplicityConfigurationClass()
The getEffectiveMultiplicityConfigurationClass() method walks up the model tree to find
the related module configuration. Then it uses the module implementation configuration variant
to return the selected configuration class as specified in the parameter definition.

© 2025, Vector Informatik GmbH 367 of 387

Chapter 6. Data models in detail

This method never returns null. In case the detection of the configuration class fails (e.g. if
the related module configuration cannot be detected), this method returns EEcucConfigura-
tionClass.PRE_COMPILE by default.

This is for post-build loadable only!

getEffectiveValueConfigurationClass()
The getEffectiveValueConfigurationClass() method walks up the model tree to find the re-
lated module configuration. Then it uses the module implementation configuration variant to
return the selected configuration class as specified in the parameter definition.

This method never returns null. In case the detection of the configuration class fails (e.g. if
the related module configuration cannot be detected), this method returns EEcucConfigura-
tionClass.PRE_COMPILE by default.

This is for post-build loadable only!

6.5.2.2 Post-build selectable

EcucModuleConfiguration IEcucModuleConfiguration is the base interface of all module con-
figuration wrappers. It provides the following method(s):

supportsPostBuildVariance()
The supportsPostBuildVariance() method returns true if this module configuration supports
post-build selectable.

This is for post-build selectable only!

What this method actually does:

• It checks if the related definition specifies post-build selectable as supported

• It checks if the module configuration implements post-build variance. That’s true in the
following cases

– If the modules definition has schema version 4.4 or higher: Check if the PostBuild-
VariantUsed is true

– If the modules definition has schema version 4.2.1 or higher: Check if the modules
ADMIN-DATA flag "postBuildVariantSupport" is true (false is default if this flag is
missing)

– If the modules definition has a schema version lower than 4.2.1: Check if the mod-
ules implementation configuration variant contains one of the following values VARI-
ANT_POST_BUILD_SELECTABLE or VARIANT_POST_BUILD

It returns true if both conditions are true.

setPostBuildVarianceSupport()
The setPostBuildVarianceSupport(boolean) method sets the post-build support flag in the
module configuration.

This is for post-build selectable only!

Remarks concerning AUTOSAR versions:

• If the modules definition has schema version 4.4.0 or higher, this method sets the Post-
BuildVariantUsed to the specified value.

© 2025, Vector Informatik GmbH 368 of 387

Chapter 6. Data models in detail

• If the modules definition has schema version 4.2.1 or higher but less than 4.4.0, this method
sets the modules ADMIN-DATA flag "postBuildVariantSupport" to the specified value.

• If the modules definition has a schema version lower than 4.2.1, the modules implementation
configuration variant in the MDF model encodes both, post-build loadable and post-build
selectable. The following behavior is being implemented in this case:

Current model value Parameter Result in the model
PRE_COMPILE true POST_BUILD_SELECTABLE

false PRE_COMPILE
LINK_TIME true POST_BUILD_SELECTABLE

false LINK_TIME
POST_BUILD_LOADABLE true POST_BUILD

false POST_BUILD_LOADABLE
POST_BUILD_SELECTABLE true POST_BUILD_SELECTABLE

false PRE_COMPILE
POST_BUILD true POST_BUILD

false POST_BUILD_LOADABLE

EcucContainer IEcucContainer is the base interface of all container wrappers. It provides the
following method(s):

supportsVariantMultiplicity()
The supportsVariantMultiplicity() method returns true if the related module configuration
supports variance and this containers definition support variant multiplicity. If true is returned
this means that different variants may contain different number of instances of this container.

If the container has no definition, this method returns false.

This method is for post-build selectable only!

EcucParameter IEcucParameter is the base interface of all parameter and reference wrappers.
It provides the following method(s):

supportsVariantMultiplicity()
The supportsVariantMultiplicity() method returns true if the related module configura-
tion supports variance and this parameters definition support variant multiplicity. If true is
returned this means that different variants may contain different number of instances of this pa-
rameter.

If the parameter has no definition, this method returns false.

This is for post-build selectable only!

supportsVariantValue()

The supportsVariantValue() method returns true if the related module configuration supports
variance and this parameters definition support variant values. If true is returned this means that
different variants may contain different values in instances of this parameter.

If the parameter has no definition, this method returns false.

This is for post-build selectable only!

© 2025, Vector Informatik GmbH 369 of 387

7 AutomationInterface Content

7.1 Introduction
This chapter describes the content of the DaVinci Configurator AutomationInterface.

7.2 Folder Structure
The AutomationInterface consists of the following files and folders:

• dvcfg

– dvcfgpai

∗ _doc (find more details to its content in chapter 7.3)

· DVCfg_AutomationInterfaceDocumentation.pdf: this document

· javadoc: Javadoc HTML pages

· templates: script file and script project templates for a simple start of script
development

∗ libs: compile bindings to Groovy and to the DaVinci Configurator AutomationIn-
terface, used by IntelliJ IDEA and Gradle

7.3 Script Development Help
The help for the AutomationInterface script development is distributed among the following
sources:

• DVCfg_AutomationInterfaceDocumentation.pdf (this document)

• Javadoc HTML Pages

• Script Templates

7.3.1 AutomationInterfaceDocumentation PDF
You find this document as described in chapter 7.2. It provides a good overview of architecture,
available APIs and gives an introduction of how to get started in script development. The focus
of the document is to provide an overview and not to be complete in API description. To get a
complete and detailed description of APIs and methods use the Javadoc HTML Pages as described
in 7.3.2.

7.3.2 Javadoc HTML Pages
You find this documentation as described in chapter 7.2. Open the file index.html to access the
complete DaVinci Configurator AutomationInterface API reference. It contains descriptions of all
classes and methods that are part of the AutomationInterface.

The Javadoc is also accessible at your source code in the IDE for script development.

© 2025, Vector Informatik GmbH 370 of 387

Chapter 7. AutomationInterface Content

7.3.3 Script Templates
You find the Script Templates as described in chapter 7.2 on the preceding page. You may copy
them for a quick startup in script development.

7.4 Libs and BuildLibs
The AutomationInterface contains libraries to build projects, see buildLibs in 7.2 on the previous
page . And it contains other libraries which are described in libs in 7.2 on the preceding page.

7.5 Beta API Usage
The beta annotation is exempt from any compatibility guarantees made by its containing library.
Note that the presence of this annotation implies nothing about the quality or performance of the
API in question, only the fact that it is not "API-frozen".

Note that the client which uses this API must upgrade to each product release, to guarantee, that
the used API is still available.

Beta API is annotated with:
@ PublishedBeta

Listing 7.1: Beta API Annotation

To use Beta APIs in script projects, see the following example:

scriptProject {
allowBetaApiUsage = true

}

Listing 7.2: allowBetaApiUsage flag enables beta API usage

7.6 Introduction
An automation script project is a normal Java/Groovy development project, where the built
artifact is a single .jar file. The jar file is created by the build system, see chapter 7.14 on
page 385.

It is the recommended way to develop scripts, containing more tasks or multiple classes.

The project provides IDE support for:

• Code completion

• Syntax highlighting

• API Documentation

• Debug support

• Build support

The recommended IDE is IntelliJ IDEA.

© 2025, Vector Informatik GmbH 371 of 387

Chapter 7. AutomationInterface Content

7.7 Automation Script Project Creation
To create a new script project please follow the instructions in chapter 3.6 on page 13.

7.8 Project File Content
An automation project will at least contain the following files and folders:

• Folders

– .gradle - Gradle temp folder - DO NOT commit it into a version control system

– build - Gradle build folder - DO NOT commit it into a version control system

– gradle - Gradle bootstrap folder - Please commit it into your version control system

– src - Source folder containing your Groovy, Java, Kotlin sources and resource files

– testCfg - Test folder containing tests written with the [@sec:AutomationTestingFramework:Automation
Testing Framework] for your script project.

• Files

– Gradle files - see 7.14.2 on page 385 for details

∗ gradlew.bat

∗ build.gradle

∗ settings.gradle

– IntelliJ Project files (optional) - DO NOT commit it into a version control system

∗ ProjectName.iws

∗ ProjectName.iml

∗ ProjectName.ipr

The IntelliJ Project files (*.iws, *.iml, *.ipr) can be recreated with the command in the
windows command shell (cmd.exe): gradlew idea

7.9 Deployment of the Jar File
To deploy your automation script project you only need to deploy the built jar file located in
<ProjectDir>/build/libs/<ProjectName>-<Version>.jar. All other files in your automation
script project are not required for the script execution.

So if you want to use your script project in an DaVinci Configurator project, copy the jar file into
the DaVinci Configurator project and add the folder containing the jar file in the Script Locations
view with the Project scope.

7.10 IntelliJ IDEA Usage
7.10.1 Show API Specifications (JavaDoc)
In newer IntelliJ versions the automatic download of the source files and their respective javadocs
has been disabled. In order to benefit from the API-Specifications during coding it is necessary to

© 2025, Vector Informatik GmbH 372 of 387

Chapter 7. AutomationInterface Content

download the source files. This has to be done manually.

If source files are not yet downloaded, it looks like 7.1.

Figure 7.1: No JavaDoc

To download source files enter with F3 the API and click on "Download Sources" 7.11 on page 381.

Figure 7.2: No JavaDoc

© 2025, Vector Informatik GmbH 373 of 387

Chapter 7. AutomationInterface Content

Figure 7.3: JavaDoc

7.10.2 Building Projects
Project Build The standard way to build projects is to choose the option <ProjectName>
[build] in the Run Menu in the toolbar and to press the Run Button beneath that menu.

Figure 7.4: Project Build

7.10.3 Debugging with IntelliJ
1. Access Debug Options

• Navigate to the script project’s remote debug options

• Copy the remote debug options

2. Set Up Shell Environment

• Open a shell terminal and navigate to the core directory of the DaVinci Configurator
installation

• Set the DVCFG_JVM_ARGS environment variable in the shell with your copied remote
debug options. Note: Modify the suspend flag to suspend=y to enable the wait-for-
debugger mode.

• Verify the correct shell configuration: echo $env:DVCFG_JVM_ARGS

3. Start Debugging the Script Task

• Use the opened shell terminal to start the script task as usual.

• Set the desired breakpoints in the script code

© 2025, Vector Informatik GmbH 374 of 387

Chapter 7. AutomationInterface Content

Figure 7.5: Remote Debug Options

Figure 7.6: Shell Debug Variable

• After the script task is started, the DaVinci Configurator will wait for a debugger to
connect.

Figure 7.7: Run Script Task

• Now attach your script to the DaVinci Configurators script task execution process, by
activating the remote debugging in the script project.

7.10.4 Troubleshooting
Code completion, Compilation If the code completion or compilation does not work, please
verify that the Java JDK settings in the IntelliJ IDEA are correct. You have to set the Project
JDK and the Gradle JDK setting. See 3.6.2 on page 14.

© 2025, Vector Informatik GmbH 375 of 387

Chapter 7. AutomationInterface Content

Figure 7.8: Attach for Debugger

Gradle build, build button If the Gradle build does nothing after start or the build button is
grayed, please verify that the Java JDK settings in the IntelliJ IDEA are correct. You have to set
the Gradle JDK setting. See 3.6.2 on page 14.

If the build button is marked with an error, please make sure that the Gradle plugin inside of
IntelliJ IDEA is installed. Open File->Settings...->Plugins and select the Gradle plugin.

IntelliJ Build You shall not use the IntelliJ menu "Build" or the context menu entries "Make
Project", "Make Module", "Rebuild Project" or "Compile". The project shall be build with Gradle
not with IntelliJ IDEA. So you have to select one of the Run Configuration (Run menu) to build
the project as described in chapter 7.10 on page 372.

Groovy SDK not configured If you get the message ’Groovy SDK is not configured for ...’ in
IntelliJ IDEA you probably have to migrate your project as described in chapter 7.12 on the next
page.

No JavaDoc Shown If you don’t see a javadoc description for the APIs. See chapter 7.10.1 on
page 372.

Compile errors - Could not find com.vector.cfg:DVCfgAutomationInterface If you get compile
errors inside of the IntelliJ IDEA, after updating the DaVinci Configurator or moving projects.

Please execute the Project Migration to newer DaVinci Configurator Version step, see
7.12 on the next page.

Download of Gradle Distribution Error If you get an error when you start the gradlew like:
Downloading
http://vistrcfgci1.vi.vector.int/buildcomponents/Gradle/distributions/gradle-9.2.1-bin.zip

Exception in thread "main" java.io.FileNotFoundException:
http://vistrcfgci1.vi.vector.int/buildcomponents/Gradle/distributions/gradle-9.2.1-bin.zip
at sun.net.www.protocol.http.HttpURLConnection.getInputStream0(HttpURLConnection.java:1836)

The problem is you can’t connect to the server, where the Gradle installation is located1 .
To change the location, you have to open the file <YourProject>/gradle/wrapper/gradle-
wrapper.properties and change the line distributionUrl=.

You have multiple options for the content of the distributionUrl:

• Change the URL to the Gradle default (needs internet access):

– https://services.gradle.org/distributions/gradle-9.2.1-bin.zip

1 The vector internal server http://vistrcfgci1.vi.vector.int is not accessible from outside of the vector network
and shall only be used by internal projects. If you have a project with the internal server and your are not inside
the network, please change it to another location.

© 2025, Vector Informatik GmbH 376 of 387

Chapter 7. AutomationInterface Content

• Change the URL to a Server location of your choice. E.g inside your company.

• Download Gradle manually and change the URL to a local file system location like:

– file:/D:/YourFolder/gradle-9.2.1-bin.zip

Caution: You have to escape a : with \: so an HTTP address would start with http\:// and
the local filesystem would start with file\:/.

So the default line in the file ‘gradle-wrapper.properties‘ for the default Gradle server would be:
distributionUrl=https\://services.gradle.org/distributions/gradle-9.2.1-bin.zip

7.11 Project Usage in different DaVinci Configurator Versions
You can execute the script tasks of a script project in different versions of the DaVinci Configurator
as long as the following conditions are met:

• The script was compiled with the oldest DaVinci Configurator version in which it should be
used

Figure 7.9: Shows the script compatibility

• The DaVinci Configurator version span must not contain a breaking change.

• If you use the BswmdModel, you have to use a compatible BSW package.

– The used BSW module definitions (BSWMD files) must have compatible names and
multiplicities.

7.12 Script Project Update to a newer
Configurator/AutomationInterface version

If updating the script project to a newer DaVinci Configurator respectively a newer Automation-
Interface version, it is necessary to rebuild the script project.

Figure 7.10: Shows the Script Update

© 2025, Vector Informatik GmbH 377 of 387

Chapter 7. AutomationInterface Content

Steps to execute:

1. Verify the correct reference in the build.gradle file to the DaVinci Configurator installation
folder.
scriptProject {

cfgPath = file("<PATH_TO_CFG6 >")
}

Listing 7.3: cfgPath variable stores the path to the CFG installation

2. Rebuild the script project with the gradlew build command.

This will update the compile time dependencies of your Script Project according to the new DaVinci
Configurator version.

© 2025, Vector Informatik GmbH 378 of 387

Chapter 7. AutomationInterface Content

7.13 Build System
The build system uses Gradle2 to build a single Jar file. It also setups the dependencies to the
DaVinci Configurator and create the IntelliJ IDEA project.

To set up the Gradle installation, see chapter 3.6.2 on page 15.

7.13.1 Jar Creation and Output Location
The call to gradlew build in the root directory of your automation script project will create the
jar file. The *.jar output location is <ProjectRoot>/build/libs/<ProjectName>.jar.

7.13.2 Gradle File Structure
The default automation project contains the following Gradle build files:

• gradlew.bat

– Gradle batch file to start Gradle (Gradle Wrapper3)

• build.gradle

– General build file - You can modify it to adapt the build to your needs

• settings.gradle

– General build project settings - See Gradle documentation4

7.13.2.1 build.gradle

The file contains three essential parts of the build:

• plugins{} Defines the used Gradle plugins

• dependencies{} Defines the dependencies 7.14.2.2 on page 385 of the project

• scriptProject{} Defines the configuration of the Automation Build Gradle Plugin. (See
Automation Build Gradle Plugin Documentation)

7.13.2.2 dependencies

We assume we have a jar from a Maven repository like Apache Commons IO (the identifier would
be ’commons-io:commons-io:2.5’, See MavenCentral).

dependencies {
// Change the identifier to your library to use
implementation 'commons -io:commons -io :2.5 '
// You could add multiple libraries with additional implementation lines

}

Listing 7.4: build.gradle - Add dependencies to a script project

• Optional: if you are behind a proxy or firewall:

2https://gradle.org/ [2025-09-23]
3https://docs.gradle.org/current/userguide/gradle_wrapper.html [2025-09-23]
4https://docs.gradle.org/current/dsl/org.gradle.api.initialization.Settings.html [2025-09-23]

© 2025, Vector Informatik GmbH 379 of 387

https://mvnrepository.com/artifact/commons-io/commons-io/2.5
https://gradle.org/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/dsl/org.gradle.api.initialization.Settings.html

Chapter 7. AutomationInterface Content

– You must either set proxy options for gradle 5

– Preferred way: use a Maven repository inside your network: To set a repository, add
before the dependencies block:

repositories {
// URL to your repository
// The URL below is the Vector internal network server
// Please change the URL to your server
maven { url 'https :// vistrpesart1 .vi. vector .int/ artifactory /pes -davinciall -

maven ' }
// Or reference MavenCentral server
mavenCentral ()

}

Usage of external Libraries (Jars) in the AutomationProject You could reference external li-
braries (Jar files) in your AutomationProject. But you have to configure the libraries in the Gradle
build files. DO NOT add a dependency in IntelliJ, this will not work.

The easiest and preferred way is the use a library from any Maven repository like MavenCentral
or JCenter. This will also handle versions, and transitive dependencies automatically.

7.13.2.3 Static Compilation of Groovy Code

The AutomationInterface contains a Groovy compiler extension. In some use cases performance
has priority, and therefore it is possible to use Groovy with static compilation.

Groovy is a dynamic JVM language using dynamic dispatch for its method calls. Dynamic dispatch
in Groovy is approximately three times slower compared to a normal Java method call. Groovy
has added the static compilation feature via @CompileStatic annotation, which allows to compile
most of Groovy method calls into direct JVM bytecode method calls, thus avoiding all the dynamic
dispatch overhead. (6)

Mark your classes or methods with:

@ CompileStatic
def myMethod () {

}

@ CompileStatic
class MyClass {

}

Listing 7.5: @CompileStatic with Automation API

The same applies, if you want to use the @TypeChecked annotation:

@ TypeChecked
def myMethod () {

}

Listing 7.6: @TypeChecked with Automation API

5Gradle and Java online documentation for details how to set proxy settings
6http://java-performance.info/static-code-compilation-groovy-2-0/ [2018-11-29]

© 2025, Vector Informatik GmbH 380 of 387

http://java-performance.info/static-code-compilation-groovy-2-0/

Chapter 7. AutomationInterface Content

7.13.2.4 Gradle Maven publishing of an AutomationProject

The Gradle scriptProject automatically adds a Gradle MavenPublication instance for all signed
Jar files. The publication is named signedJar, so the publish and publishToMavenLocal will
publish the signed Jar files.

To download source files enter with F3 the API and click on "Download Sources" 7.11.

Figure 7.11: No JavaDoc

Figure 7.12: JavaDoc

7.13.2.5 Building Projects

Project Build The standard way to build projects is to choose the option <ProjectName>
[build] in the Run Menu in the toolbar and to press the Run Button beneath that menu.

© 2025, Vector Informatik GmbH 381 of 387

Chapter 7. AutomationInterface Content

Figure 7.13: Project Build

7.13.2.6 Debugging with IntelliJ

1. Access Debug Options

• Navigate to the script project’s remote debug options

• Copy the remote debug options

Figure 7.14: Remote Debug Options

2. Set Up Shell Environment

• Open a shell terminal and navigate to the core directory of the DaVinci Configurator
installation

• Set the DVCFG_JVM_ARGS environment variable in the shell with your copied remote
debug options. Note: Modify the suspend flag to suspend=y to enable the wait-for-
debugger mode.

• Verify the correct shell configuration: echo $env:DVCFG_JVM_ARGS

Figure 7.15: Shell Debug Variable

3. Start Debugging the Script Task

© 2025, Vector Informatik GmbH 382 of 387

Chapter 7. AutomationInterface Content

• Use the opened shell terminal to start the script task as usual.

• Set the desired breakpoints in the script code

• After the script task is started, the DaVinci Configurator will wait for a debugger to
connect.

Figure 7.16: Run Script Task

• Now attach your script to the DaVinci Configurators script task execution process, by
activating the remote debugging in the script project.

Figure 7.17: Attach for Debugger

7.13.2.7 Script Project Update to a newer Configurator/AutomationInterface version

If updating the script project to a newer DaVinci Configurator respectively a newer Automation-
Interface version, it is necessary to rebuild the script project.

Figure 7.18: Shows the Script Update

Steps to execute:

1. Verify the correct reference in the build.gradle file to the DaVinci Configurator installation
folder.
scriptProject {

cfgPath = file("<PATH_TO_CFG6 >")
}

Listing 7.7: cfgPath variable stores the path to the CFG installation

© 2025, Vector Informatik GmbH 383 of 387

Chapter 7. AutomationInterface Content

2. Rebuild the script project with the gradlew build command.

This will update the compile time dependencies of your Script Project according to the new DaVinci
Configurator version.

© 2025, Vector Informatik GmbH 384 of 387

Chapter 7. AutomationInterface Content

7.14 Build System
The build system uses Gradle7 to build a single Jar file. It also setups the dependencies to the
DaVinci Configurator and create the IntelliJ IDEA project.

To set up the Gradle installation, see chapter 3.6.2 on page 15.

7.14.1 Jar Creation and Output Location
The call to gradlew build in the root directory of your automation script project will create the
jar file. The *.jar output location is <ProjectRoot>/build/libs/<ProjectName>.jar.

7.14.2 Gradle File Structure
The default automation project contains the following Gradle build files:

• gradlew.bat

– Gradle batch file to start Gradle (Gradle Wrapper8)

• build.gradle

– General build file - You can modify it to adapt the build to your needs

• settings.gradle

– General build project settings - See Gradle documentation9

7.14.2.1 build.gradle

The file contains three essential parts of the build:

• plugins{} Defines the used Gradle plugins

• dependencies{} Defines the dependencies 7.14.2.2 of the project

• scriptProject{} Defines the configuration of the Automation Build Gradle Plugin. (See
Automation Build Gradle Plugin Documentation)

7.14.2.2 dependencies

We assume we have a jar from a Maven repository like Apache Commons IO (the identifier would
be ’commons-io:commons-io:2.5’, See MavenCentral).

dependencies {
// Change the identifier to your library to use
implementation 'commons -io:commons -io :2.5 '
// You could add multiple libraries with additional implementation lines

}

Listing 7.8: build.gradle - Add dependencies to a script project

• Optional: if you are behind a proxy or firewall:

7https://gradle.org/ [2025-09-23]
8https://docs.gradle.org/current/userguide/gradle_wrapper.html [2025-09-23]
9https://docs.gradle.org/current/dsl/org.gradle.api.initialization.Settings.html [2025-09-23]

© 2025, Vector Informatik GmbH 385 of 387

https://mvnrepository.com/artifact/commons-io/commons-io/2.5
https://gradle.org/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/dsl/org.gradle.api.initialization.Settings.html

Chapter 7. AutomationInterface Content

– You must either set proxy options for gradle 10

– Preferred way: use a Maven repository inside your network: To set a repository, add
before the dependencies block:

repositories {
// URL to your repository
// The URL below is the Vector internal network server
// Please change the URL to your server
maven { url 'https :// vistrpesart1 .vi. vector .int/ artifactory /pes -davinciall -

maven ' }
// Or reference MavenCentral server
mavenCentral ()

}

Usage of external Libraries (Jars) in the AutomationProject You could reference external li-
braries (Jar files) in your AutomationProject. But you have to configure the libraries in the Gradle
build files. DO NOT add a dependency in IntelliJ, this will not work.

The easiest and preferred way is the use a library from any Maven repository like MavenCentral
or JCenter. This will also handle versions, and transitive dependencies automatically.

7.14.2.3 Static Compilation of Groovy Code

The AutomationInterface contains a Groovy compiler extension. In some use cases performance
has priority, and therefore it is possible to use Groovy with static compilation.

Groovy is a dynamic JVM language using dynamic dispatch for its method calls. Dynamic dispatch
in Groovy is approximately three times slower compared to a normal Java method call. Groovy
has added the static compilation feature via @CompileStatic annotation, which allows to compile
most of Groovy method calls into direct JVM bytecode method calls, thus avoiding all the dynamic
dispatch overhead. (11)

Mark your classes or methods with:

@ CompileStatic
def myMethod () {

}

@ CompileStatic
class MyClass {

}

Listing 7.9: @CompileStatic with Automation API

The same applies, if you want to use the @TypeChecked annotation:

@ TypeChecked
def myMethod () {

}

Listing 7.10: @TypeChecked with Automation API

10Gradle and Java online documentation for details how to set proxy settings
11http://java-performance.info/static-code-compilation-groovy-2-0/ [2018-11-29]

© 2025, Vector Informatik GmbH 386 of 387

http://java-performance.info/static-code-compilation-groovy-2-0/

Chapter 7. AutomationInterface Content

7.14.2.4 Gradle Maven publishing of an AutomationProject

The Gradle scriptProject automatically adds a Gradle MavenPublication instance for all signed
Jar files. The publication is named signedJar, so the publish and publishToMavenLocal will
publish the signed Jar files.

© 2025, Vector Informatik GmbH 387 of 387

	1 Release Version Alignment
	2 Introduction
	2.1 General
	2.2 Facts

	3 Getting started with Script Development
	3.1 General
	3.2 Automation Script Development Types
	3.3 Script
	3.4 Script Creation
	3.5 Script File
	3.6 Script Project
	3.6.1 Java JDK Setup
	3.6.2 IntelliJ IDEA Setup

	3.7 Script Testing
	3.8 Script Debugging
	3.9 Script Location
	3.10 Kotlin Support
	3.11 List Script Task
	3.12 Run Script Task
	3.13 Add Script Location To Project
	3.14 Remove Script Location From Project
	3.15 Logging Configuration
	3.15.1 scriptLogger

	4 AutomationInterface Architecture
	4.1 Components
	4.2 Languages
	4.3 Script Structure
	4.3.1 Script Tasks
	4.3.2 Script Locations

	4.4 Script loading
	4.4.1 Internal Script Reload Behavior

	4.5 Script Coding Conventions and Constraints
	4.5.1 Usage of static fields
	4.5.2 Usage of Outer Closure Scope Variables
	4.5.3 States over script task execution
	4.5.4 Multithreading Support
	4.5.5 Usage of DaVinci Configurator private Classes Methods or Fields

	5 AutomationInterface API Reference
	5.1 Introduction
	5.2 Script Creation
	5.2.1 Script Task Creation
	5.2.1.1 Script Creation with IDE Code Completion Support
	5.2.1.2 Script Task isExecutableIf

	5.2.2 Description and Help

	5.3 Script Task Types
	5.3.1 Available Types
	5.3.1.1 Application Types
	5.3.1.2 Project Types
	5.3.1.3 UI Types
	5.3.1.4 Generation Types

	5.4 Script Task Execution
	5.4.1 Execution Context
	5.4.1.1 Code Block Arguments

	5.4.2 Task Execution Sequence
	5.4.3 Script Path API during Execution
	5.4.3.1 Path Resolution by Parent Folder
	5.4.3.2 Path Resolution
	5.4.3.3 Script Folder Path Resolution
	5.4.3.4 Project Folder Path Resolution
	5.4.3.5 BSW Package Folder Path Resolution
	5.4.3.6 Temp Folder Path Resolution
	5.4.3.7 Other Project and Application Paths

	5.4.4 Script logging API
	5.4.5 Versions API
	5.4.6 User Interactions
	5.4.6.1 UserInteraction
	5.4.6.2 Progress Indication

	5.4.7 Script Error Handling
	5.4.7.1 Script Exceptions
	5.4.7.2 Script Task Abortion by Exception
	5.4.7.3 Unhandled Exceptions from Tasks

	5.4.8 User Defined Classes and Methods
	5.4.9 Usage of Automation API in own defined Classes and Methods
	5.4.9.1 Access the Automation API like the Script code{} Block
	5.4.9.2 Access the Project API of the current active Project

	5.4.10 User Defined Script Task Arguments
	5.4.10.1 User defined Argument Validators
	5.4.10.2 Constraints
	5.4.10.3 Run Script Task with User Defined Task Arguments from CLI

	5.4.11 Stateful Script Tasks
	5.4.12 ScriptAccess - Calling ScriptTasks

	5.5 Project Handling
	5.5.1 Projects
	5.5.2 Accessing the active Project
	5.5.3 Accessing the project search
	5.5.4 Expression Evaluation API
	5.5.5 Accessing Project Settings
	5.5.5.1 Project Folder Api
	5.5.5.2 Target Project Settings
	5.5.5.3 UseCase Project Settings

	5.5.6 Accessing Advanced Project Settings
	5.5.6.1 Firewall Files Settings

	5.5.7 Creating a new CFG6 Project
	5.5.7.1 Mandatory Settings
	5.5.7.2 Optional Project Settings
	5.5.7.3 Target Settings
	5.5.7.4 Project Type Settings
	5.5.7.5 Post Build Settings
	5.5.7.6 Project Folder Settings
	5.5.7.7 External References
	5.5.7.8 Additional BSWMD modules

	5.5.8 Opening an existing Project
	5.5.8.1 Parameterized Project Load
	5.5.8.2 Open Project Details

	5.5.9 Create Ecu Configuration Report
	5.5.10 Saving a Project
	5.5.11 Opening AUTOSAR Files as Project
	5.5.11.1 Raw AUTOSAR models as Project

	5.6 Model
	5.6.1 Introduction
	5.6.2 Getting Started
	5.6.2.1 Read the ActiveEcuc
	5.6.2.2 Write the ActiveEcuc
	5.6.2.3 Read the SystemDescription
	5.6.2.4 Write the SystemDescription

	5.6.3 BswmdModel in AutomationInterface
	5.6.3.1 BswmdModel Package and Class Names
	5.6.3.2 Reading with BswmdModel
	5.6.3.3 Writing with BswmdModel
	5.6.3.4 Declaration with BswmdModel
	5.6.3.5 Bsw DefRefs
	5.6.3.6 BswmdModel DefRefs
	5.6.3.7 Untyped Model with the DefRef API
	5.6.3.8 Switching from Domain Models to BswmdModel

	5.6.4 MDF Model in AutomationInterface
	5.6.4.1 Reading the MDF Model
	5.6.4.2 Reading the MDF Model by String
	5.6.4.3 Writing the MDF Model
	5.6.4.4 Simple Property Changes
	5.6.4.5 Creating single Child Members (0:1)
	5.6.4.6 Creating and adding Child List Members (0:*)
	5.6.4.7 Updating existing Elements
	5.6.4.8 Deleting Model Objects
	5.6.4.9 Duplicating Model Objects
	5.6.4.10 Special properties and extensions
	5.6.4.11 Reverse Reference Resolution - ReferencesPointingToMe
	5.6.4.12 Derived Containers
	5.6.4.13 AUTOSAR Root Object
	5.6.4.14 ActiveEcuC
	5.6.4.15 DefRef based Access to Containers and Parameters
	5.6.4.16 Ecuc Parameter and Reference Value Access
	5.6.4.17 Getting and Setting Formula Expression Values

	5.6.5 SystemDescription Access
	5.6.6 Transactions
	5.6.6.1 Transactions API
	5.6.6.2 Operations

	5.6.7 Model Synchronization
	5.6.8 PreBuild and PostBuild Variance (Post-build selectable)
	5.6.8.1 Investigate Project Variance
	5.6.8.2 Variant Model Objects

	5.6.9 Additional Model API
	5.6.9.1 User Annotations

	5.7 Generation
	5.7.1 Code Generation
	5.7.1.1 Generation Settings
	5.7.1.2 Generation of Generation Steps
	5.7.1.3 Evaluate generation or validation results

	5.7.2 Generation Task Types
	5.7.3 Software Component Templates and Contract Phase Headers Generation
	5.7.3.1 Swct Generation Settings
	5.7.3.2 Generation with default Project Settings
	5.7.3.3 Generation of all Software Components
	5.7.3.4 Generation of one Software Component
	5.7.3.5 Generation of multiple Software Components
	5.7.3.6 Set a user defined logger
	5.7.3.7 Evaluate generation results

	5.8 Validation
	5.8.1 Introduction
	5.8.2 Access Validation-Results
	5.8.3 Model Transaction and Validation-Result Invalidation
	5.8.4 Solve Validation-Results with Solving-Actions
	5.8.4.1 Solver API

	5.8.5 Advanced Topics
	5.8.5.1 Erroneous CEs of a Validation-Result
	5.8.5.2 Access Validation-Results of a Model Object
	5.8.5.3 Access Validation-Results of a DefRef
	5.8.5.4 Filter Validation-Results using an ID Constant
	5.8.5.5 Identification of a Particular Solving-Action
	5.8.5.6 Validation-Result Description as MixedText
	5.8.5.7 Further IValidationResultUI Methods
	5.8.5.8 IValidationResultUI Acknowledgement
	5.8.5.9 IValidationResultUI in a variant (Post-Build selectable) Project
	5.8.5.10 Examine Solving-Action Execution
	5.8.5.11 Create a Validation-Result in a Script Task
	5.8.5.12 Clear the on-demand ValidationResult
	5.8.5.13 Turn off auto-solving-action execution

	5.9 SystemDescription and StructuredExtract
	5.9.1 ISysDescService and sysDescModel-keyword
	5.9.2 StructuredExtract and FlatView
	5.9.2.1 StructuredComponentView vs. FlatComponentView
	5.9.2.2 Component-Instantiation
	5.9.2.3 Context and CompositionComponentSubstitute
	5.9.2.4 ComponentPorts and ConnectionBuilder

	5.9.3 Examples

	5.10 Domains
	5.10.1 Communication Domain
	5.10.1.1 CanControllers
	5.10.1.2 CanFilterMasks
	5.10.1.3 CanPdus
	5.10.1.4 J1939 Requestable Configuration

	5.10.2 Diagnostics Domain
	5.10.2.1 DemEvents

	5.10.3 Mode Management Domain
	5.10.3.1 BswM Auto Configuration

	5.10.4 Runtime System Domain
	5.10.4.1 Component Port Selection
	5.10.4.2 Signal Instance Selection
	5.10.4.3 Communication Element Selection
	5.10.4.4 Component Type Selection
	5.10.4.5 Event Selection
	5.10.4.6 Executable Entity Selection
	5.10.4.7 Port Interface Selection
	5.10.4.8 Origin Component Port Selection
	5.10.4.9 Component Port Connection
	5.10.4.10 Disconnect (unmap) Component Ports
	5.10.4.11 Terminating Component Ports
	5.10.4.12 Data Mapping
	5.10.4.13 Remove Data Mappings
	5.10.4.14 Configure RTE Implementation Plug-ins
	5.10.4.15 Create Component Prototypes
	5.10.4.16 Create Delegation Ports
	5.10.4.17 Task Mapping
	5.10.4.18 Bridge Between MDF and SI Model elements
	5.10.4.19 Deleting Elements
	5.10.4.20 Variant Handling
	5.10.4.21 Retrieving Short Name Paths and Fully Qualified Names
	5.10.4.22 Best Practice And Further Examples
	5.10.4.23 Access to CEState of SI Model elements

	5.10.5 Crypto Domain

	5.11 Unresolved Reference API
	5.11.1 Active ECUC Unresolved Reference API
	5.11.1.1 Selecting unresolved references
	5.11.1.2 Set changeable unresolved references

	5.12 Persistency
	5.12.1 Model Export
	5.12.1.1 Export ActiveEcuc
	5.12.1.2 Export PostBuild Variants (Post-build selectable)
	5.12.1.3 Export PreBuild Variants
	5.12.1.4 Export Module Configuration
	5.12.1.5 Advanced Exports

	5.12.2 Model Import
	5.12.2.1 Module Configuration Import
	5.12.2.2 Specify Import Mode and Module Filter

	5.13 Compare and Merge
	5.13.1 Read Only Project Comparison
	5.13.1.1 Structure
	5.13.1.2 Accessing the API
	5.13.1.3 IProjectCompare
	5.13.1.4 IProjectCompareConfigBuilder
	5.13.1.5 IProjectCompareResult
	5.13.1.6 IProjectCompareDifference
	5.13.1.7 IDifferenceValues
	5.13.1.8 Examples

	5.13.2 Auto merge
	5.13.2.1 Structure
	5.13.2.2 Accessing the API
	5.13.2.3 IAutomerge
	5.13.2.4 IAutomergeConfigBuilder
	5.13.2.5 IAutomergeResult
	5.13.2.6 INotAutomergeableDifference
	5.13.2.7 Filter Use Cases

	5.13.3 Unified Diff
	5.13.3.1 Structure
	5.13.3.2 Accessing the API
	5.13.3.3 IUnifiedDiff
	5.13.3.4 IUnifiedDiffConfigBuilder
	5.13.3.5 IUnifiedDiffResult

	5.14 Project Update API
	5.15 Utilities
	5.15.1 Converters

	5.16 Advanced Topics
	5.16.1 Java Development
	5.16.1.1 Script Task Creation in Java Code
	5.16.1.2 Java Code accessing Groovy API
	5.16.1.3 Java Code in dvgroovy Scripts

	6 Data models in detail
	6.1 MDF model - the raw AUTOSAR data
	6.1.1 Naming
	6.1.2 The models inheritance hierarchy
	6.1.2.1 MIObject and MDFObject

	6.1.3 The models containment tree
	6.1.4 The ECUC model
	6.1.5 Order of child objects
	6.1.6 AUTOSAR references
	6.1.7 Model changes
	6.1.7.1 Transactions
	6.1.7.2 Undo/redo
	6.1.7.3 Event handling
	6.1.7.4 Deleting model objects
	6.1.7.5 Access to deleted objects
	6.1.7.6 Set-methods
	6.1.7.7 Changing child list content
	6.1.7.8 Change restrictions

	6.2 Post-build selectable
	6.2.1 Model views
	6.2.1.1 What model views are
	6.2.1.2 The IModelViewManager project service
	6.2.1.3 Variant siblings
	6.2.1.4 The Invariant model views
	6.2.1.5 Accessing invisible objects
	6.2.1.6 IViewedModelObject
	6.2.1.7 Default Model View

	6.2.2 Change Modes
	6.2.2.1 Variant Specific Model Changes
	6.2.2.2 Variant Common Model Changes
	6.2.2.3 Default Change Mode

	6.3 BswmdModel details
	6.3.1 BswmdModel - DefinitionModel
	6.3.1.1 Types of DefinitionModels
	6.3.1.2 DefRef Getter methods of Untyped Model
	6.3.1.3 References
	6.3.1.4 Post-build selectable with BswmdModel
	6.3.1.5 Creation ModelView of the BswmdModel
	6.3.1.6 Lazy Instantiating
	6.3.1.7 Optional Elements
	6.3.1.8 Class and Interface Structure of the BswmdModel
	6.3.1.9 BswmdModel Write Access
	6.3.1.10 BswmdModel Declaration API

	6.3.2 BswmdModel generation
	6.3.2.1 DerivativeMapping

	6.4 Model Utility Classes
	6.4.1 AutosarUtil
	6.4.2 AsrPath
	6.4.3 TypedAsrPath
	6.4.4 AsrObjectLink
	6.4.4.1 Restrictions of object links

	6.4.5 DefRefs
	6.4.5.1 TypedDefRefs
	6.4.5.2 DefRef Wildcards

	6.4.6 CeState
	6.4.6.1 Getting a CeState object
	6.4.6.2 IParameterStatePublished
	6.4.6.3 IContainerStatePublished

	6.5 Model Services
	6.5.1 EcucDefinitionAccess
	6.5.1.1 Post-build loadable
	6.5.1.2 Post-build selectable

	6.5.2 EcuConfigurationAccess
	6.5.2.1 Post-build loadable
	6.5.2.2 Post-build selectable

	7 AutomationInterface Content
	7.1 Introduction
	7.2 Folder Structure
	7.3 Script Development Help
	7.3.1 AutomationInterfaceDocumentation PDF
	7.3.2 Javadoc HTML Pages
	7.3.3 Script Templates

	7.4 Libs and BuildLibs
	7.5 Beta API Usage
	7.6 Introduction
	7.7 Automation Script Project Creation
	7.8 Project File Content
	7.9 Deployment of the Jar File
	7.10 IntelliJ IDEA Usage
	7.10.1 Show API Specifications (JavaDoc)
	7.10.2 Building Projects
	7.10.3 Debugging with IntelliJ
	7.10.4 Troubleshooting

	7.11 Project Usage in different DaVinci Configurator Versions
	7.12 Script Project Update to a newer Configurator/AutomationInterface version
	7.13 Build System
	7.13.1 Jar Creation and Output Location
	7.13.2 Gradle File Structure
	7.13.2.1 build.gradle
	7.13.2.2 dependencies
	7.13.2.3 Static Compilation of Groovy Code
	7.13.2.4 Gradle Maven publishing of an AutomationProject
	7.13.2.5 Building Projects
	7.13.2.6 Debugging with IntelliJ
	7.13.2.7 Script Project Update to a newer Configurator/AutomationInterface version

	7.14 Build System
	7.14.1 Jar Creation and Output Location
	7.14.2 Gradle File Structure
	7.14.2.1 build.gradle
	7.14.2.2 dependencies
	7.14.2.3 Static Compilation of Groovy Code
	7.14.2.4 Gradle Maven publishing of an AutomationProject

